UPDATE ON ARCHAEOLOGICAL SITES ON THE ALDERMEN ISLANDS

Graham Ussher
School of Environmental and Marine Sciences, University of Auckland, Private Bag 92019, Auckland

SUMMARY

Archaeological sites are described from Ruamahua-iti and Hongiora Islands in the Aldermen Islands group, off the east coast of the Coromandel Peninsula. These observations constitute significant amendments to previous literature, highlighting the poor human settlement information base available for such isolated islands. Factors influencing survey success and the implications for management are also discussed.

Keywords: Archaeology; Maori occupation; Aldermen Islands; Ruamahua-iti; Hongiora.

INTRODUCTION

Situated approximately 20 km off the east coast of the Coromandel Peninsula, the Aldermen Islands comprise four major islands (size range 16-32 ha) and at least 16 smaller stacks (Taylor 1989). All islands within the group are designated Nature Reserves and support populations of varied fauna including northern tuatara (Sphenodon punctatus) (Cree and Butler 1993), and various seabird species.

Although recognised as being used to some extent by Maori in pre-European times, the Aldermens group has attracted only superficial attention to archaeological sites. Occupation of individual islands has been recorded since the 1700s (see Moore 1973), but it was not until 1972 that an effort was made to document the evidence on all islands by P.R. Moore during an Auckland University Field Club expedition. However, Moore noted that the lack of time available on each island as well as other natural factors, meant that his examination represented an incomplete assessment of human occupation.

The notes presented here, together with Moore's observations are seen as representing only an incomplete picture of the total sites present on these islands. It is hoped that this will encourage more experienced archaeologists to conduct a full inventory of the Aldermen's pre-European history.
METHODS AND RESULTS

Observations were made during a 14 day visit to Ruamahua-iti and Hongiora Islands between 22 November and 5 December 1996. Tuatara population dynamics were the focus of the expedition. As a consequence only a small amount of time was devoted to mapping archaeological sites, although on Ruamahua-iti most of the main island area was searched and sites noted. Rudimentary maps of sites were compiled and sites measured or approximate dimensions estimated. Artefacts where found (not actively searched for) were noted and their locations mapped.
Ruamahua-iti Island

Seven days were spent on the island and approximately 80% of the main island plateau was searched for sites. Moore notes one terraced site (Ul1/5), comprising a series of nine major levels, on the most northern ridge of the island (Fig. 1). On this current visit, four additional terraced sites and two artefact locations were noted.

Site Ul1/6: Located on the most eastern ridge overlooking Tuatara Bay (Fig. 1), this site consists of four major terrace levels, all well preserved (Fig. 2a). Maximum length of terraces is approximately 40 m, and width ranges between 4 m and 6 m. Vegetation present is mid-successional, with kawakawa (*Macropiper excelsum*) dominating the subcanopy and understorey and *Coprosma* sp. and mahoe (*Melicytus ramiflorus*) forming a 5-6 m incomplete canopy. Moderate petrel burrowing is present throughout the site, with some small areas of high burrow densities.

Site Ul1/7: Located on the southernmost cliff edge (running east-west) of the island (Fig. 1), this site consists of two indistinct terraces whose length is bisected by north-south running ridges ascending to the southern cliffs. Total length of each terrace is in excess of 30 m, width 5 m or less. Severe slumping is present in some places due to the steepness of the valley sides, with heavy burrowing below the terraces, although only minor burrowing on the terraces themselves.

Site Ul1/8: A major terrace system is situated along the full length of a central north-south orientated ridge (Fig. 1). The system consists of a minimum of 14 individual platforms and earthen walls, with the width of all terraces 4-6 m. Length ranges from 8 m (greatest altitude) to over 40 m, stretching across the ridge formed between two small stream valleys (Fig. 2b). All terraces are well preserved, especially those in the upper section of the system. Vegetation stage differs with altitude, appearing to reflect time since last modification. Upper terraces support a mixture of 7-9 m karo (*Pittosporum crassifolium*) and mahoe, with an open understorey. Burrow densities are very high in these upper areas. Lower terraces are characterised by considerably denser vegetation dominated by sapling *Coprosma* and mahoe. Burrow densities are significantly lower or absent from these lower areas.

Site Ul1/9: On the next ridge west of Ul1/8 is a single, well preserved terrace, 15 m long.

Site Ul1/10: On the next ridge east of Ul1/8 is a single 20-25 m long, 4 m wide incomplete terrace. At the western end of the terrace an earthen wall runs diagonally towards the west, until the terrace peters out. It appears that the terrace was at an advanced stage of completion, with earth being gradually dug out from the bank.

Artefact Find Sites: Two rounded, smooth oblong stones were found on the banks of streams on the island (see Fig. 1). Both stones showed obvious signs
Fig. 2a. Site U11/6 showing four distinct terraces (T1-T4) on the eastern cliffs ridge.

Fig. 2b. Site U11/8 showing 14 discrete terraces (T1-T14) and earthen walls.
of being deliberately crafted by humans. However, since neither artefact was removed from the island for examination, their specific use is not known. Small amounts of obsidian (all flakes) were also found throughout the island (not mapped).

Hongiora Island

Seven days were also spent on Hongiora. However, the extreme burrow densities over the entire island meant that only two small sections (approximately 10% of the island area) on the southern and north-eastern coasts were searched. On the last day a brief search was also made on the southern peninsula, yielding a significant defensive formation. Moore's 1972 visit (of several hours) found no archaeological sites on Hongiora but noted two obsidian fragments on the south-eastern side of the island. In contrast to Ruamahua-iti, much of Hongiora is covered in thick, low taupata (*Coprosma repens*)/coastal mahoe (*Melicytus novae-zelandiae*) vegetation which makes observation of local topography difficult.

Sites U11/11 & U11/13: Located at the coastal fringe of the single large south-facing valley on the island, this site consists of three separate piles of heaped stones, one near the coastal edge and the other two on the small ridge to the west of the valley (Fig. 3).

Site U11/12: This was most probably a defensive pa site. Located on the small peninsula at the south end of the island (Fig. 2), there has been considerable earth and rock works over the entire peninsula (Fig. 4). The peninsula is accessible only by a 3-5 m wide tongue of land to the main island, with 15-20 m cliffs on either side and surrounding the entire peninsula. The top of the area has been worked to provide a flat area approximately 30 x 15 m. A 2-3 m rock retaining wall above the southern and western cliffs provide support for backfilled land facing the mainland. On the eastern side, less steep banks have been modified to provide four terraces stretching the length of the peninsula, with a maximum length of 30 m. Terraces at the western end of the peninsula are in an advanced state of decay, while those at the eastern end remain well preserved. Due to lack of time, no searches were conducted for artefacts on this site.

Artefacts: At least ten obsidian fragments were noted, most occurring at the bottom of the southern valley.

DISCUSSION

This survey highlights important problems inherent in island studies. Although access to sites and available survey time influence mainland site assessments, the quality of island appraisals is often significantly influenced by the additional problems of vegetation cover and density of seabird burrows.
Fig. 3. Hongiora Island (16 ha). Approximately 10% of the main island area was searched for archaeological sites, concentrated mainly around the southern landing and north-eastern valley areas.

Time and vegetation stage were undoubtedly the leading factors accounting for the differences between this and Moore's 1972 survey. Although Field Club members spent 10 days on Ruamahua-iti in 1972, identification of archaeological sites was secondary to the noting geological features on the island, meaning that only a minimal amount of time was spent on the island proper, and then mostly within valleys due to vegetation thickness elsewhere (Court et al. 1973; Hayward pers comm.). Considerable ridge terracing was
Fig. 4. Site plan for fortified peninsula (U11/12) on Hongiora Island showing high degree of earth and stoneworks.
immediately apparent on this recent visit to Ruamahua-iti, but the maturity of the vegetation since Moore's survey 27 years ago means that topographical features were no longer obscured to the extent that they would have been in 1972.

From this survey it is clear that the two islands visited, and probably also others in the Aldermen Islands group, have been modified considerably more than suggested by Moore's 1972 findings. Evidence of pre-European landscaping covers all three of the major internal ridges and all three major valley heads or sides ending in cliffs on Ruamahua-iti Island. This suggests that most of Ruamahua-iti's typically north facing ridges and valley sides, perfectly positioned to receive maximum radiation, were managed as gardens. Similarly, evidence of occupation found in the small areas searched on Hongiora suggest that this island too underwent considerable vegetation removal, both for gardens and for defensive areas. The piles of stones located at the periphery of the main southern sloping valley suggest that the area was intensively managed as gardens, for which the clearing of rocks is a pre-requisite. The lack of defined terracing on the areas examined on Hongiora can be attributed to the gently sloping nature of the valley, the dense undercover present and, more importantly, to the extreme degree of petrel burrowing which would have quickly broken down any evidence of small earth walls or other structures. Hongiora is characterised by its high petrel densities, and this gives the island a soil quality unmatched by other islands in the group. Bell et al. (1951) noted this fact when documenting the quick recovery of vegetation on the north face of the island following a fire in 1935.

Islands offer one of the best localities for documenting and preserving not only our biological, but also our historical heritage, both Maori and European. Difficulty for human access and enforced landing restrictions have ensured that sites on many islands such as the Aldermens largely suffer only natural biological damage (such as from burrowing petrels), rather than that caused by heavy human traffic and associated activities. Allocation of protection effort depends on our ability to adequately record the type, distribution and quality of sites in areas. Failure to document significant finds could mean lost anthropological opportunities and, in the case of poorly understood areas such as the Aldermens, could heavily influence how human occupation is interpreted in terms of habitat degradation and present patterns of species distribution.

The Aldermen Islands fall into an elite category of sites. Many islands, although featuring sites of significant value have also suffered significant European habitation, which in many cases has destroyed, modified or confused the extent of Maori occupational evidence. This features heavily not only on many inshore islands (such as Tiritiri Matangi, Mana and Motutapu Islands), but also on many offshore islands considered to have escaped such affects - for example Red Mercury Island (Mercury group), and two of the three Chickens
Islands in the Hen and Chickens group. Value is added by their current high wildlife protection status restricting research impact, and the islands' high transport costs, isolation, landing difficulties, and lack of camp sites and facilities which restrict research interest.

The pre-European history of the Aldermens is poorly documented. This study, again limited by time and lack of experienced surveyors, at least doubles the available information base. Conditions for conducting surveys on some islands will continue to increase favourably as vegetation matures. However, site quality will degrade as petrel burrowing continues and future research and management projects ensure an ongoing human presence. Any attempts to catalogue past uses for these islands must consider the likely damage surveyors may make to petrel burrows, which in many places frustrate survey work. Nonetheless, considering the favourable vegetation conditions and ongoing threats to sites, it would seem timely for a new, concerted effort to document the human history of these islands.

ACKNOWLEDGEMENTS

I am extremely grateful to David Mawer, (Isles of Scilly, England), for help in the field and for the enthusiasm he showed in discovering the Aldermen Islands’ history during our stay. The funding for this survey was generously provided by the Waikato Branch of the Royal Forest and Bird Protection Society (NZ) and Auckland University. Many thanks also to John Craig (Auckland University), Bruce Hayward (Auckland Museum) and Neville Ritchie (Department of Conservation, Waikato) for commenting on drafts of the manuscript.

REFERENCES
