GENERALIZED POPOVICIU FUNCTIONAL EQUATIONS IN BANACH MODULES OVER A C^*-ALGEBRA AND APPROXIMATE ALGEBRA HOMOMORPHISMS

CHUN–GIL PARK

(Received March 2002)

1. Introduction

Let E_1 and E_2 be Banach spaces with norms $\| \cdot \|$ and $\| \cdot \|$, respectively. Consider $f : E_1 \to E_2$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_1$. Assume that there exist constants $\varepsilon \geq 0$ and $p \in [0,1)$ such that

$$\|f(x + y) - f(x) - f(y)\| \leq \varepsilon (\|x\|^p + \|y\|^p)$$

for all $x, y \in E_1$. Th. M. Rassias [11] showed that there exists a unique \mathbb{R}–linear mapping $T : E_1 \to E_2$ such that

$$\|f(x) - T(x)\| \leq \frac{2\varepsilon}{2 - 2p} \|x\|^p$$

for all $x \in E_1$.

Throughout this paper, let A be a unital C^*–algebra with norm $\| \cdot \|$, $U(A)$ the unitary group of A, A_{in} the set of invertible elements in A, A_{sa} the set of self-adjoint elements in A, $A_1 = \{a \in A \mid \|a\| = 1\}$, and A_1^+ the set of positive elements in A_1. Let $_AB$ and $_AC$ be left Banach A–modules with norms $\| \cdot \|$ and $\| \cdot \|$, respectively. Let n and k be integers with $2 \leq k \leq n - 1$.

Recently, T. Trif [19] generalized the Popoviciu functional equation

$$3f \left(\frac{x + y + z}{3} \right) + f(x) + f(y) + f(z) = 2 \left(f \left(\frac{x + y}{2} \right) + f \left(\frac{y + z}{2} \right) + f \left(\frac{z + x}{2} \right) \right)$$

2000 AMS Mathematics Subject Classification: Primary 47B48, 39B72, 46L05.

Key words and phrases: Banach module over C^*–algebra, stability, real rank 0, unitary group, generalized Popoviciu functional equation, approximate algebra homomorphism.

This work was supported by grant No. 1999–2–102–001–3 from the interdisciplinary Research program year of the KOSEF.
Lemma A. [19, Theorem 2.1] Let V and W be vector spaces. A mapping $f : V \to W$ with $f(0) = 0$ satisfies the functional equation

$$n \cdot n-2C_{k-2}f\left(\frac{x_1 + \cdots + x_n}{n}\right) + n-2C_{k-1} \sum_{i=1}^{n} f(x_i) = k \cdot \sum_{1 \leq i_1 < \cdots < i_k \leq n} f\left(\frac{x_{i_1} + \cdots + x_{i_k}}{k}\right) \quad (A)$$

for all $x_1, \cdots, x_n \in V$ if and only if the mapping $f : V \to W$ satisfies the additive Cauchy equation $f(x + y) = f(x) + f(y)$ for all $x, y \in V$.

The following is useful to prove the stability of the functional equation (A).

Lemma B. [10, Theorem 1] Let $a \in A$ and $|a| < 1 - \frac{2}{m}$ for some integer m greater than 2. Then there are m elements $u_1, \cdots, u_m \in \mathcal{U}(A)$ such that $ma = u_1 + \cdots + u_m$.

The main purpose of this paper is to prove the Hyers–Ulam–Rassias stability of the functional equation (A) in Banach modules over a unital C^*-algebra, and to prove the Hyers–Ulam–Rassias stability of algebra homomorphisms between Banach algebras associated with the functional equation (A).

2. Stability of Generalized Popoviciu Functional Equations in Banach Modules over a C^*-Algebra Associated with its Unitary Group

We are going to prove the Hyers–Ulam–Rassias stability of the functional equation (A) in Banach modules over a unital C^*-algebra associated with its unitary group.

For a given mapping $f : A\mathcal{B} \to A\mathcal{C}$ and a given $a \in A$, we set

$$D_a f(x_1, \cdots, x_n) := n \cdot n-2C_{k-2}af\left(\frac{x_1 + \cdots + x_n}{n}\right) + n-2C_{k-1} \sum_{i=1}^{n} a f(x_i) - k \cdot \sum_{1 \leq i_1 < \cdots < i_k \leq n} f\left(\frac{ax_{i_1} + \cdots + ax_{i_k}}{k}\right)$$

for all $x_1, \cdots, x_n \in A\mathcal{B}$.

Theorem 2.1. Let $q = \frac{k(n-1)}{n-k}$ and $r = -\frac{k}{n-k}$. Let $f : A\mathcal{B} \to A\mathcal{C}$ be a mapping with $f(0) = 0$ for which there exists a function $\varphi : A\mathcal{B}^n \to [0, \infty)$ such that

$$\varphi(x_1, \cdots, x_n) := \sum_{j=0}^{\infty} q^j \varphi(q^j x_1, \cdots, q^j x_n)$$

$$< \infty \|D_u f(x_1, \cdots, x_n)\| \leq \varphi(x_1, \cdots, x_n) \quad (2.i)$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \cdots, x_n \in A\mathcal{B}$. Then there exists a unique A-linear mapping $T : A\mathcal{B} \to A\mathcal{C}$ such that

$$\|f(x) - T(x)\| \leq \frac{1}{k \cdot n-1C_{k-1}} \varphi(qx, rx, \cdots, rx) \quad (2.ii)$$

for all $x \in A\mathcal{B}$.
Proof. Put $u = 1 \in U(A)$. By [19, Theorem 3.1], there exists a unique additive mapping $T : A \mathbb{B} \to A \mathbb{C}$ satisfying (2.ii). The additive mapping $T : A \mathbb{B} \to A \mathbb{C}$ was defined by

$$T(x) = \lim_{j \to \infty} q^{-j} f(q^j x)$$

for all $x \in A \mathbb{B}$.

By the assumption, for each $u \in U(A)$,

$$q^{-j} \|Du f(q^j x, \ldots, q^j x)\| \leq q^{-j} \varphi(q^j x, \ldots, q^j x)$$

for all $x \in A \mathbb{B}$, and

$$q^{-j} \|Du f(q^j x, \ldots, q^j x)\| \to 0$$

as $n \to \infty$ for all $x \in A \mathbb{B}$. So

$$Du T(x, \ldots, x) = \lim_{j \to \infty} q^{-j} Du f(q^j x, \ldots, q^j x) = 0$$

for all $u \in U(A)$ and all $x \in A \mathbb{B}$. Hence

$$Du T(x, \ldots, x) = n \cdot n - 2 C_{k - 2} u T(x) + n \cdot n - 2 C_{k - 1} u T(x) - n \cdot n C_k T(u x) = 0$$

for all $u \in U(A)$ and all $x \in A \mathbb{B}$. So

$$u T(x) = T(u x)$$

for all $u \in U(A)$ and all $x \in A \mathbb{B}$.

Now let $a \in A$ ($a \neq 0$) and M an integer greater than $4|a|$. Then

$$\left| \frac{a}{M} \right| = \frac{1}{M} |a| < \frac{|a|}{4|a|} = \frac{1}{4} < 1 - \frac{2}{3} = \frac{1}{3} .$$

By Lemma B, there exist three elements $u_1, u_2, u_3 \in U(A)$ such that $3 \frac{a}{M} = u_1 + u_2 + u_3$. And $T(x) = T \left(3 \cdot \frac{1}{3} x \right) = 3T \left(\frac{1}{3} x \right)$ for all $x \in A \mathbb{B}$. So $T \left(\frac{1}{3} x \right) = \frac{1}{3} T(x)$ for all $x \in A \mathbb{B}$. Thus

$$T(ax) = T \left(\frac{M}{3} \cdot 3 \frac{a}{M} x \right) = M \cdot T \left(\frac{1}{3} \cdot 3 \frac{a}{M} x \right) = \frac{M}{3} T \left(3 \frac{a}{M} x \right)$$

$$= \frac{M}{3} T(u_1 x + u_2 x + u_3 x) = \frac{M}{3} \left(T(u_1 x) + T(u_2 x) + T(u_3 x) \right)$$

$$= \frac{M}{3} (u_1 + u_2 + u_3) T(x) = \frac{M}{3} \cdot \frac{3}{M} T(x)$$

$$= a T(x)$$

for all $x \in A \mathbb{B}$. Obviously, $T(0x) = 0T(x)$ for all $x \in A \mathbb{B}$. Hence

$$T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)$$

for all $a, b \in A$ and all $x, y \in A \mathbb{B}$. So the unique additive mapping $T : A \mathbb{B} \to A \mathbb{C}$ is an A–linear mapping, as desired.

□

Applying the unital C^*–algebra \mathbb{C} to Theorem 2.1, one can obtain the following.
Corollary 2.2. Let E_1 and E_2 be complex Banach spaces with norms $\| \cdot \|$ and $\| \cdot \|$, respectively. Let $q = \frac{k(n-1)}{n-k}$ and $r = -\frac{k}{n-k}$. Let $f : E_1 \to E_2$ be a mapping with $f(0) = 0$ for which there exists a function $\varphi : E_1^n \to [0, \infty)$ such that

$$
\varphi(x_1, \ldots, x_n) := \sum_{j=0}^{\infty} q^{-j} \varphi(q^j x_1, \ldots, q^j x_n)
$$

for all $\lambda \in T^1 := \{ \lambda \in \mathbb{C} \mid |\lambda| = 1 \}$ and all $x_1, \ldots, x_n \in E_1$. Then there exists a unique \mathbb{C}-linear mapping $T : E_1 \to E_2$ such that

$$
\| f(x) - T(x) \| < \infty \| D_\lambda f(x_1, \ldots, x_n) \| \leq \varphi(x_1, \ldots, x_n)
$$

for all $x \in E_1$.

Theorem 2.3. Let $q = \frac{k(n-1)}{n-k}$ and $r = -\frac{k}{n-k}$. Let $f : A \mathbb{B} \to A \mathbb{C}$ be a continuous mapping with $f(0) = 0$ for which there exists a function $\varphi : A \mathbb{B}^n \to [0, \infty)$ satisfying (2.i) such that

$$
\| D_u f(x_1, \ldots, x_n) \| \leq \varphi(x_1, \ldots, x_n)
$$

for all $u \in U(A)$ and all $x_1, \ldots, x_n \in A \mathbb{B}$. If the sequence $\{ q^{-j} f(q^j x) \}$ converges uniformly on $A \mathbb{B}$, then there exists a unique continuous A-linear mapping $T : A \mathbb{B} \to A \mathbb{C}$ satisfying (2.ii).

Proof. Put $u = 1 \in U(A)$. By Theorem 2.1, there exists a unique A-linear mapping $T : A \mathbb{B} \to A \mathbb{C}$ satisfying (2.ii). By the continuity of f, the uniform convergence and the definition of T, the A-linear mapping $T : A \mathbb{B} \to A \mathbb{C}$ is continuous, as desired. \hfill \Box

Theorem 2.4. Let $q = \frac{k(n-1)}{n-k}$ and $r = -\frac{1}{n-k}$. Let $f : A \mathbb{B} \to A \mathbb{C}$ be a mapping with $f(0) = 0$ for which there exists a function $\varphi : A \mathbb{B}^n \to [0, \infty)$ such that

$$
\varphi(x_1, \ldots, x_n) := \sum_{j=0}^{\infty} q^{-j} \varphi(q^{-j} x_1, \ldots, q^{-j} x_n) < \infty
$$

for all $u \in U(A)$ and all $x_1, \ldots, x_n \in A \mathbb{B}$. Then there exists a unique A-linear mapping $T : A \mathbb{B} \to A \mathbb{C}$ such that

$$
\| f(x) - T(x) \| \leq \frac{1}{n-2C_k-1} \varphi(x, rx, \ldots, rx)
$$

for all $x \in A \mathbb{B}$.

Proof. Put $u = 1 \in U(A)$. By [19, Theorem 3.2], there exists a unique additive mapping $T : A \mathbb{B} \to A \mathbb{C}$ satisfying (2.iv). The additive mapping $T : A \mathbb{B} \to A \mathbb{C}$ was defined by

$$
T(x) = \lim_{j \to \infty} q^j f(q^{-j} x)
$$

for all $x \in A \mathbb{B}$.

By the assumption, for each $u \in U(A)$,

$$
q^j \| D_u f(q^{-j} x, \ldots, q^{-j} x) \| \leq q^j \varphi(q^{-j} x, \ldots, q^{-j} x)
$$

for all \(x \in \mathcal{A} \mathcal{B} \), and

\[
q^j \| D_u f(q^{-j} x, \cdots, q^{-j} x) \| \rightarrow 0
\]
as \(n \rightarrow \infty \) for all \(x \in \mathcal{A} \mathcal{B} \). So

\[
D_u T(x, \cdots, x) = \lim_{j \rightarrow \infty} q^j D_u f(q^{-j} x, \cdots, q^{-j} x) = 0
\]
for all \(u \in \mathcal{U}(A) \) and all \(x \in \mathcal{A} \mathcal{B} \). Hence

\[
D_u T(x, \cdots, x) = n \cdot n_{-2} C_{k-2} u T(x) + n \cdot n_{-2} C_{k-1} u T(x) - k \cdot n C_k T(u x) = 0
\]
for all \(u \in \mathcal{U}(A) \) and all \(x \in \mathcal{A} \mathcal{B} \). So

\[
u T(x) = T(u x)
\]
for all \(u \in \mathcal{U}(A) \) and all \(x \in \mathcal{A} \mathcal{B} \).

The rest of the proof is the same as the proof of Theorem 2.1. \(\Box \)

Given a locally compact abelian group \(G \) and a multiplier \(\omega \) on \(G \), one can associate to them the twisted group \(C^* \)-algebra \(C^*(G, \omega) \). \(C^*(\mathbb{Z}^m, \omega) \) is said to be a noncommutative torus of rank \(m \) and denoted by \(A_\omega \). The multiplier \(\omega \) determines a subgroup \(S_\omega \) of \(G \), called its symmetry group, and the multiplier is called totally skew if the symmetry group \(S_\omega \) is trivial. And \(A_\omega \) is called completely irrational if \(\omega \) is totally skew (see [2]). It was shown in [2] that if \(G \) is a locally compact abelian group and \(\omega \) is a totally skew multiplier on \(G \), then \(C^*(G, \omega) \) is a simple \(C^* \)-algebra. It was shown in [3, Theorem 1.5] that if \(A_\omega \) is a simple noncommutative torus then \(A_\omega \) has real rank \(0 \), where “real rank \(0 \)” means that the set of invertible self-adjoint elements is dense in the set of self-adjoint elements (see [3], [6]).

From now on, assume that \(\varphi : \mathcal{A} \mathcal{B}^n \rightarrow [0, \infty) \) is a function satisfying (2.1), and that \(q = \frac{k(n-1)}{n-k} \) and \(r = \frac{k}{n-k} \).

We are going to prove the Hyers–Ulam–Rassias stability of the functional equation (A) in Banach modules over a unital \(C^* \)-algebra.

Theorem 3.1. Let \(q \) be not an integer. Let \(f : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) be a mapping with \(f(0) = 0 \) such that

\[
\| D_1 f(x_1, \cdots, x_n) \| \leq \varphi(x_1, \cdots, x_n)
\]

for all \(x_1, \cdots, x_n \in \mathcal{A} \mathcal{B} \). Then there exists a unique additive mapping \(T : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) satisfying (2.ii). Further, if \(f(\lambda x) \) is continuous in \(\lambda \in \mathbb{R} \) for each fixed \(x \in \mathcal{A} \mathcal{B} \), then the additive mapping \(T : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) is \(\mathbb{R} \)-linear.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique additive mapping \(T : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) satisfying (2.ii).

Assume that \(f(\lambda x) \) is continuous in \(\lambda \in \mathbb{R} \) for each fixed \(x \in \mathcal{A} \mathcal{B} \). By the assumption, \(q \) is a rational number which is not an integer. The additive mapping \(T \) given above is similar to the additive mapping \(T \) given in the proof of [11, Theorem]. By the same reasoning as the proof of [11, Theorem], the additive mapping \(T : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) is \(\mathbb{R} \)-linear. \(\Box \)
Theorem 3.2. Let \(q \) be not an integer. Let \(f : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) be a continuous mapping with \(f(0) = 0 \) such that

\[
\|D_a f(x_1, \cdots, x_n)\| \leq \varphi(x_1, \cdots, x_n)
\]

for all \(a \in \mathcal{A}^+_1 \cup \{i\} \) and all \(x_1, \cdots, x_n \in \mathcal{A} \mathcal{B} \). If the sequence \(\{q^{-j} f(q^j x)\} \) converges uniformly on \(\mathcal{A} \mathcal{B} \), then there exists a unique continuous \(\mathcal{A} \)-linear mapping \(T : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) satisfying (2.ii).

Proof. Put \(a = 1 \in \mathcal{A}^+_1 \). By Theorem 3.1, there exists a unique \(\mathbb{R} \)-linear mapping \(T : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) satisfying (2.ii). By the continuity of \(f \) and the uniform convergence, the \(\mathbb{R} \)-linear mapping \(T : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) is continuous.

By the same reasoning as the proof of Theorem 2.1,

\[
T(ax) = aT(x)
\]

for all \(a \in \mathcal{A}^+_1 \cup \{i\} \).

For any element \(a \in \mathcal{A} \), \(a = \frac{a+a^*}{2} + i \frac{a-a^*}{2i} \), and \(\frac{a+a^*}{2} \) and \(\frac{a-a^*}{2i} \) are self-adjoint elements, furthermore, \(a = \left(\frac{a+a^*}{2} \right)^+ - \left(\frac{a+a^*}{2} \right)^- + i \left(\frac{a-a^*}{2i} \right)^+ - i \left(\frac{a-a^*}{2i} \right)^- \), where \(\left(\frac{a+a^*}{2} \right)^+ \), \(\left(\frac{a+a^*}{2} \right)^- \), \(\left(\frac{a-a^*}{2i} \right)^+ \), and \(\left(\frac{a-a^*}{2i} \right)^- \) are positive elements (see [4, Lemma 38.8]). So

\[
T(ax) = T \left(\left(\frac{a+a^*}{2} \right)^+ x - \left(\frac{a+a^*}{2} \right)^- x + i \left(\frac{a-a^*}{2i} \right)^+ x - i \left(\frac{a-a^*}{2i} \right)^- x \right)
\]

\[
= \left(\frac{a+a^*}{2} \right)^+ T(x) + \left(\frac{a+a^*}{2} \right)^- T(-x) + i \left(\frac{a-a^*}{2i} \right)^+ T(ix)
\]

\[
+ \left(\frac{a-a^*}{2i} \right)^- T(-ix)
\]

\[
= \left(\frac{a+a^*}{2} \right)^+ T(x) - \left(\frac{a+a^*}{2} \right)^- T(x) + i \left(\frac{a-a^*}{2i} \right)^+ T(x)
\]

\[
- i \left(\frac{a-a^*}{2i} \right)^- T(x)
\]

\[
= \left(\left(\frac{a+a^*}{2} \right)^+ - \left(\frac{a+a^*}{2} \right)^- + i \left(\frac{a-a^*}{2i} \right)^+ - i \left(\frac{a-a^*}{2i} \right)^- \right) T(x)
\]

\[
= aT(x)
\]

for all \(a \in \mathcal{A} \) and all \(x \in \mathcal{A} \mathcal{B} \). Hence

\[
T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)
\]

for all \(a, b \in \mathcal{A} \) and all \(x, y \in \mathcal{A} \mathcal{B} \), as desired. \(\square \)

Theorem 3.3. Let \(\mathcal{A} \) be a unital \(C^* \)-algebra of real rank 0, and \(q \) not an integer. Let \(f : \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{C} \) be a continuous mapping with \(f(0) = 0 \) such that

\[
\|D_a f(x_1, \cdots, x_n)\| \leq \varphi(x_1, \cdots, x_n)
\]
for all \(a \in (A_1^+ \cap A_{in}) \cup \{i\} \) and all \(x_1, \ldots, x_n \in A B \). If the sequence \(\{q^{-i} f(q^j x)\} \) converges uniformly on \(A B \), then there exists a unique continuous \(A \)-linear mapping \(T : A B \to A C \) satisfying (2.ii).

Proof. By the same reasoning as the proof of Theorem 3.2, there exists a unique continuous \(\mathbb{R} \)-linear mapping \(T : A B \to A C \) satisfying (2.ii), and

\[
T(ax) = aT(x) \tag{3.1}
\]

for all \(a \in (A_1^+ \cap A_{in}) \cup \{i\} \) and all \(x \in A B \).

Let \(b \in A_1^+ \setminus A_{in} \). Since \(A_{in} \cap A_{sa} \) is dense in \(A_{sa} \), there exists a sequence \(\{b_m\} \) in \(A_{in} \cap A_{sa} \) such that \(b_m \to b \) as \(m \to \infty \). Put \(c_m = \frac{1}{|b_m|} b_m \). Then \(c_m \to \frac{1}{|b|} b = b \) as \(m \to \infty \). Put \(a_m = \sqrt{c_m} c_m \). Then \(a_m \to b \) as \(m \to \infty \) and \(a_m \in A_1^+ \cap A_{in} \). Thus there exists a sequence \(\{a_m\} \) in \(A_1^+ \cap A_{in} \) such that \(a_m \to b \) as \(m \to \infty \), and by the continuity of \(T \)

\[
\lim_{m \to \infty} T(a_m x) = T(\lim_{m \to \infty} a_m x) = T(bx) \tag{3.2}
\]

for all \(x \in A B \). By (3.1),

\[
\|T(a_m x) - bT(x)\| = \|a_m T(x) - bT(x)\| \to \|bT(x) - bT(x)\| = 0 \tag{3.3}
\]

as \(m \to \infty \). By (3.2) and (3.3),

\[
\|T(bx) - T(a_m x)\| \leq \|T(bx) - T(bx)\| + \|T(a_m x) - bT(x)\| \to 0 \quad \text{as} \quad m \to \infty \tag{3.4}
\]

for all \(x \in A B \). By (3.1) and (3.4), \(T(ax) = aT(x) \) for all \(a \in A_1^+ \cup \{i\} \) and all \(x \in A B \).

The rest of the proof is similar to the proof of Theorem 3.2.

Theorem 3.4. Let \(q \) be not an integer. Let \(f : A B \to A C \) be a mapping with \(f(0) = 0 \) such that

\[
\|D_a f(x_1, \ldots, x_n)\| \leq \varphi(x_1, \ldots, x_n)
\]

for all \(a \in A_1^+ \cup \{i\} \) and all \(x_1, \ldots, x_n \in A B \). If \(f(\lambda x) \) is continuous in \(\lambda \in \mathbb{R} \) for each fixed \(x \in A B \), then there exists a unique \(A \)-linear mapping \(T : A B \to A C \) satisfying (2.ii).

Proof. Put \(a = 1 \in A_1^+ \). By Theorem 3.1, there exists a unique \(\mathbb{R} \)-linear mapping \(T : A B \to A C \) satisfying (2.ii).

The rest of the proof is similar to the proof of Theorem 3.2.

Theorem 3.5. Let \(A \) be a unital \(C^* \)-algebra of real rank \(0 \), and \(q \) not an integer. Let \(f : A B \to A C \) be a mapping with \(f(0) = 0 \) such that

\[
\|D_a f(x_1, \ldots, x_n)\| \leq \varphi(x_1, \ldots, x_n)
\]

for all \(a \in (A_1^+ \cap A_{in}) \cup \{i\} \) and all \(x_1, \ldots, x_n \in A B \). Assume that \(f(ax) \) is continuous in \(a \in A_1 \cup \mathbb{R} \) for each fixed \(x \in A B \), and that the sequence \(\{q^{-i} f(q^j x)\} \) converges uniformly on \(A_1 \) for each fixed \(x \in A B \). Then there exists a unique \(A \)-linear mapping \(T : A B \to A C \) satisfying (2.ii).
Proof. By the same reasoning as the proof of Theorem 3.2, there exists a unique \mathbb{R}–linear mapping $T : \mathcal{A}\mathcal{B} \to \mathcal{A}\mathcal{C}$ satisfying (2.ii), and
\[
T(ax) = aT(x)
\]
for all $a \in (A_1^+ \cap A_{in}) \cup \{i\}$ and all $x \in \mathcal{A}\mathcal{B}$. By the continuity of f and the uniform convergence, one can show that $T(ax)$ is continuous in $a \in A_1$ for each $x \in \mathcal{A}\mathcal{B}$.

The rest of the proof is similar to the proof of Theorem 3.3. □

Theorem 3.6. Let $f : \mathcal{A}\mathcal{B} \to \mathcal{A}\mathcal{C}$ be a mapping with $f(0) = 0$ such that
\[
\|D_a f(x_1, \cdots, x_n)\| \leq \varphi(x_1, \cdots, x_n)
\]
for all $a \in A_1^+ \cup \{i\} \cup \mathbb{R}$ and all $x_1, \cdots, x_n \in \mathcal{A}\mathcal{B}$. Then there exists a unique \mathcal{A}–linear mapping $T : \mathcal{A}\mathcal{B} \to \mathcal{A}\mathcal{C}$ satisfying (2.ii).

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique additive mapping $T : \mathcal{A}\mathcal{B} \to \mathcal{A}\mathcal{C}$ satisfying (2.ii), and
\[
T(ax) = aT(x)
\]
for all $a \in A_1^+ \cup \{i\} \cup \mathbb{R}$ and all $x \in \mathcal{A}\mathcal{B}$. So the mapping $T : \mathcal{A}\mathcal{B} \to \mathcal{A}\mathcal{C}$ is \mathbb{R}–linear, and satisfies
\[
T(ax) = aT(x)
\]
for all $a \in A_1^+ \cup \{i\}$ and all $x \in \mathcal{A}\mathcal{B}$.

The rest of the proof is the same as the proof of Theorem 3.2. □

Similarly, for the case that $\varphi : \mathcal{A}\mathcal{B}^n \to [0, \infty)$ is a function such that
\[
\sum_{j=0}^{\infty} q^j \varphi(q^{-j}x_1, \cdots, q^{-j}x_n) < \infty
\]
for all $x_1, \cdots, x_n \in \mathcal{A}\mathcal{B}$, one can obtain similar results to the theorems given above.

In this section, let \mathcal{A} and \mathcal{B} be Banach algebras with norms $\| \cdot \|$ and $\| \cdot \|$, respectively.

We prove the Hyers–Ulam–Rassias stability of algebra homomorphisms between Banach algebras associated with the functional equation (A).

Theorem 4.1. Let \mathcal{A} and \mathcal{B} be real Banach algebras, and q not an integer. Let $f : \mathcal{A} \to \mathcal{B}$ be a mapping with $f(0) = 0$ for which there exists a function $\psi : A \times A \to [0, \infty)$ such that
\[
\tilde{\psi}(x, y) := \sum_{j=0}^{\infty} q^{-j} \psi(q^j x, y) < \infty, \quad (4.1)
\]
\[
\|D_1 f(x_1, \cdots, x_n)\| \leq \varphi(x_1, \cdots, x_n), \quad (4.2)
\]
\[
\|f(x \cdot y) - f(x)f(y)\| \leq \psi(x, y) \quad (4.3)
\]
for all \(x, y, x_1, \cdots, x_n \in A \). If \(f(\lambda x) \) is continuous in \(\lambda \in \mathbb{R} \) for each fixed \(x \in A \), then there exists a unique algebra homomorphism \(T : A \to B \) satisfying (2.ii). Further, if \(A \) and \(B \) are unital, then \(f \) itself is an algebra homomorphism.

Proof. Under the assumption (2.i) and (4.ii), in Theorem 3.1, we showed that there exists a unique \(\mathbb{R} \)-linear mapping \(T : A \to B \) satisfying (2.ii). The \(\mathbb{R} \)-linear mapping \(T : A \to B \) was given by

\[
T(x) = \lim_{j \to \infty} q^{-j} f(q^j x)
\]

for all \(x \in A \). Let

\[
R(x, y) = f(x \cdot y) - f(x)f(y)
\]

for all \(x, y \in A \). By (4.ii), we get

\[
\lim_{j \to \infty} q^{-j} R(q^j x, y) = 0
\]

for all \(x, y \in A \). So

\[
T(x \cdot y) = \lim_{j \to \infty} q^{-j} f(q^j (x \cdot y)) = \lim_{j \to \infty} q^{-j} f(q^j x \cdot y)
\]

for all \(x, y \in A \). Hence

\[
T(x)q^{-j} f(q^j y) = T(x) f(y)
\]

for all \(x, y \in A \). Taking the limit in (4.2) as \(j \to \infty \), we obtain

\[
T(xy) = T(x)f(y)
\]

for all \(x, y \in A \). Therefore,

\[
T(x \cdot y) = T(x)f(y)
\]

for all \(x, y \in A \). So \(T : A \to B \) is an algebra homomorphism.

Now assume that \(A \) and \(B \) are unital. By (4.2),

\[
T(y) = T(1 \cdot y) = T(1)f(y) = f(y)
\]

for all \(y \in A \). So \(f : A \to B \) is an algebra homomorphism, as desired. \(\Box \)

Theorem 4.2. Let \(A \) and \(B \) be complex Banach algebras. Let \(f : A \to B \) be a mapping with \(f(0) = 0 \) for which there exists a function \(\psi : A \times A \to [0, \infty) \) satisfying (4.i) and (4.iii) such that

\[
\|D(\lambda f)(x_1, \cdots, x_n)\| \leq \varphi(x_1, \cdots, x_n)
\]

for all \(\lambda \in \mathbb{T} \) and all \(x_1, \cdots, x_n \in A \). Then there exists a unique algebra homomorphism \(T : A \to B \) satisfying (2.ii). Further, if \(A \) and \(B \) are unital, then \(f \) itself is an algebra homomorphism.
Proof. Under the assumption \((2.i)\) and \((4.iv)\), in Corollary 2.2, we showed that there exists a unique \(\mathbb{C}\)-linear mapping \(T : A \rightarrow B\) satisfying \((2.ii)\).

The rest of the proof is the same as the proof of Theorem 4.2. \(\square\)

Theorem 4.3. Let \(A\) and \(B\) be complex Banach \(*\)-algebras. Let \(f : A \rightarrow B\) be a mapping with \(f(0) = 0\) for which there exists a function \(\psi : A \times A \rightarrow [0, \infty)\) satisfying \((4.i)\) and \((4.iii)\) such that

\[
\|D\lambda f(x_1, \ldots, x_n)\| \leq \varphi(x_1, \ldots, x_n) \quad (4.iv)
\]

\[
\|f(x^*) - f(x)^*\| \leq \varphi(x, \ldots, x) \quad (4.v)
\]

for all \(\lambda \in \mathbb{T}^1\) and all \(x, x_1, \ldots, x_n \in A\). Then there exists a unique \(*\)-algebra homomorphism \(T : A \rightarrow B\) satisfying \((2.ii)\). Further, if \(A\) and \(B\) are unital, then \(f\) itself is a \(*\)-algebra homomorphism.

Proof. By the same reasoning as the proof of Theorem 4.2, there exists a unique \(\mathbb{C}\)-linear mapping \(T : A \rightarrow B\) satisfying \((2.ii)\).

Now

\[
q^{-j}\|f(q^j x^*) - f(q^j x)^*\| \leq q^{-j}\varphi(q^j x, \ldots, q^j x)
\]

for all \(x \in A\). Thus

\[
q^{-j}\|f(q^j x^*) - f(q^j x)^*\| \rightarrow 0
\]

as \(n \rightarrow \infty\) for all \(x \in A\). Hence

\[
T(x^*) = \lim_{j \rightarrow \infty} q^{-j}f(q^j x^*) = \lim_{j \rightarrow \infty} q^{-j}f(q^j x)^* = T(x)^*
\]

for all \(x \in A\).

The rest of the proof is the same as the proof of Theorem 4.2. \(\square\)

Similarly, for the case that \(\varphi : A^n \rightarrow [0, \infty)\) and \(\psi : A \times A \rightarrow [0, \infty)\) are functions such that

\[
\sum_{j=0}^{\infty} q^j \varphi(q^{-j} x_1, \ldots, q^{-j} x_n) < \infty,
\]

\[
\sum_{j=0}^{\infty} q^j \psi(q^{-j} x, y) < \infty
\]

for all \(x, y, x_1, \ldots, x_n \in A\), one can obtain similar results to the theorems given above.

References

Chun-Gil Park
Department of Mathematics
Chungnam National University
Daejeon 305–764
KOREA
cgparkmath.cnu.ac.kr