A NOTE ON DEVELOPABILITY AND METRIZABILITY

ABDUL M. MOHAMAD
(Received December 2001)

Abstract. In this paper, we answer two questions of P. Fletcher and W. Lindgren [1] and R. Gittings [4], one of which is partially answered. We prove that a space X is developable if and only if it is $w\Delta$-space with a quasi-G_δ^*-diagonal; a space X is developable if and only if it is quasi-developable, β-space; a space X is developable if and only if it is β, quasi-γ-space with a quasi-G_δ^*-diagonal; a space is metrizable if and only if it is wM-space with a quasi-G_δ^*-diagonal.

1. Introduction

In this brief note we present some conditions which imply developability and metrizability, and consequently we give a full positive answer to Fletcher and Lindgren’s question [1] and a partial answer to R. Gittings’s question [4] respectively: is every quasi-developable β-space developable? Is every wM-space with G_δ-diagonal metrizable?

In [13], the author has obtained a factorization of quasi-developability into two parts: a space X is quasi developable if and only if it is a quasi-$w\Delta$-space with a quasi-G_δ^*-diagonal. This result plays an important role in obtaining the results in this paper.

A COC-map (= countable open covering map) for a topological space X is a function g from $N \times X$ into the topology of X such that for every $x \in X$ and $n \in N$, $x \in g(n, x)$ and $g(n + 1, x) \subseteq g(n, x)$. It is well known that many important classes of generalized metrizable spaces can be characterized in terms of a COC-map. In particular, X is developable [5] ($w\Delta$-space) if and only if X has a COC-map g such that if $\{p, x_n\} \subseteq g(n, y_n)$ for all n, then (x_n) converges to p (then (x_n) has a cluster point).

A space X is called quasi-γ [10] if and only if X has a COC-map g such that if $x_n \in g(n, y_n)$ for each $n \in N$, and the sequence (y_n) converges in X, then the sequence (x_n) has a cluster point; a space X is called semi-stratifiable [7] (β-space [6]) if and only if X has a COC-map g such that if $x \in g(n, x_n)$ for each $n \in N$ then x is a cluster point of (x_n) ((x_n) has a cluster point).

Let $\mathcal{G} = \{G_n\}_{n \in N}$ be a sequence of open families of X. For each $x \in X$, let $c(x) = c_\mathcal{G}(x) = \{n : x \in G_n^* = \bigcup \{G : G \in G_n\}\}$. A space X has a quasi-G_δ^*-diagonal [13] (quasi-$G_\delta^*(2)$-diagonal) if there is such a sequence \mathcal{G} such that for any distinct $x, y \in X$, there exists $n \in N$ such that $x \in st(x, G_n) \subset X - \{y\}$.

2000 AMS Mathematics Subject Classification: 54E30, 54E35.

Key words and phrases: quasi-$w\Delta$-space, quasi-developable space, quasi-γ-space, β-space, quasi-G_δ^*-diagonal, semi-stratifiable, c-semi-stratifiable, wM-space, metrizable space.
(x \in \text{st}^2(x, G_n) \subset X - \{y\}); a space X is called a quasi-\(w\Delta\)-space [13] if X has such a sequence \(G\) such that

1. for all \(x\), \(c(x)\) is infinite.
2. if \(\langle x_n \rangle\) is a sequence with \(x_n \in \text{st}(x, G_n)\) for all \(n \in c(x)\) then \(\langle x_n \rangle\) has a cluster point.

If we take \(G\) as a sequence of open covers of \(X\) with the condition (2) \((\langle x_n \rangle)\) is a sequence with \(x_n \in \text{st}^2(x, G_n)\) for all \(n \in \mathbb{N}\) then \(\langle x_n \rangle\) has a cluster point, then \(X\) is a \(w\Delta\)-space (\(wM\)-space).

A space \(X\) is called \(c\)-semi-stratifiable [10] if for each \(x \in X\), there is a sequence \(\langle g(n, x) \rangle\) of open neighborhoods of \(x\) such that for each compact set \(K \subset X\), if \(g(n, K) = \bigcup\{g(n, x) : x \in K\}\), then \(\cap\{g(n, K) : n \geq 1\} = K\). The \(\text{COC}\)-map \(g : \mathbb{N} \times X \to \tau\) is called a \(c\)-semi-stratification of \(X\).

A space \(X\) is quasi-developable if there exists a sequence \(\langle Q_n \rangle\) of families of open subsets of \(X\) such that for each \(x \in X\), \(\{\text{st}(x, Q_n) : n \in \mathbb{N}\} - \{\emptyset\}\) is a base at \(x\).

All spaces will be assumed regular, unless stated otherwise.

2. Main Results

Lemma 2.1. Let \(X\) be a space with a quasi-\(G_\delta^*\)-diagonal sequence. Then \(X\) has a quasi-\(G_\delta^*\)-diagonal sequence \(\langle G_n : n \in \mathbb{N}\rangle\) such that for each \(x \in X\) there is an infinite subset \(d(x) \subset c_G(x)\) such that if \(x_n \in \text{st}(x, G_n)\) for each \(n \in d(x)\) then \(\langle x_n \rangle\) either clusters at \(x\) or it does not cluster at all.

Proof. Let \(\langle H_n : n \in \mathbb{N}\rangle\) be a quasi-\(G_\delta^*\)-diagonal sequence of \(X\). Without loss of generality we may assume that \(c_H(x)\) is infinite for each \(x \in X\) and \(H_1 = \{X\}\). Let \(F\) denote the collection of non-empty finite subsets of \(\mathbb{N}\). For each \(F \in \mathcal{F}\) let

\[G_F = \{\bigcap_{i \in F} H_i : H_i \in \mathcal{H}_i\}.\]

For \(n \in \mathbb{N}\) and \(x \in X\), set \(F_n(x) = c_H(x) \cap \{1, 2, \ldots, n\}\). Put \(d(x) = \{F_n(x) : n \in \mathbb{N}\}\). Note that \(d(x) \subset c_G(x)\). Since \(c_H(x)\) is infinite, \(d(x)\) is infinite. Because \(F_n(x) \subset F_m(x)\) for \(m \geq n\), \(\text{st}(x, G_{F_m(x)}) \subset \text{st}(x, G_{F_n(x)})\) for \(m \geq n\).

For each \(n \in \mathbb{N}\) suppose that \(x_n \in \text{st}(x, G_{F_n(x)})\). Then for \(m \geq n\) we have

\[
\{x_m \mid m \geq n\} \subset \text{st}(x, G_{F_n(x)}).
\]

Since \(\cap_{n \in \mathbb{N}} \text{st}(x, G_{F_n(x)}) = \{x\}\) it follows that either \(\langle x_n \rangle\) clusters at \(x\) or does not cluster at all. \(\square\)

Remark 2.2. Let \(X\) be a space and \(\langle G_n : n \in \mathbb{N}\rangle\) a countable family of collections of open subsets of a space \(X\), such that for all \(x\), \(c(x) = \{n \in \mathbb{N} : x \in G_n^*\}\) is infinite. Consider the following condition on \(\langle G_n : n \in \mathbb{N}\rangle\): if \(\langle x_n : n \in \mathbb{N}\rangle\) is a sequence with \(x_n \in \text{st}(x, G_n)\) for all \(n \in c(x)\) then \(x\) is a cluster point of \(\langle x_n : n \in \mathbb{N}\rangle\).

For all spaces, this condition is equivalent to the following condition: for each point \(x \in X\) the set \(\text{st}(x, G_n)\) is nonempty for infinitely many \(n\) and the nonempty sets of the form \(\text{st}(x, G_n)\) form a local base at \(x\) for all \(x \in X\). Thus the condition above is a characterization of a quasi-developable space.

Theorem 2.3. Every quasi-developable space is a \(c\)-semi-stratifiable space.
Proof. Let \(\langle G_n : n \in \mathbb{N} \rangle \) be a quasi-development sequence in a space \(X \). Define
\[
g(n, x) = \begin{cases}
st(x, G_n) & \text{if } x \in G_n^*, \\ X & \text{if } x \notin G_n^*. \end{cases}
\]

Let \(h(n, x) = \cap_{i=1}^n g(i, x) \). We prove that \(h(n, x) \) is a \(c\)-semi-stratifiable-map. We claim that \(C = \cap_{n \in \mathbb{N}} h(n, C) \) for any compact \(C \subseteq X \), where \(h(n, C) = \bigcup_{c \in C} h(n, c) \). As \(G_1 = \{X\} \) it follows readily that \(C \subseteq h(n, C) \) so we need only prove the reverse inclusion. For this, let \(y \in \cap h(n, C) \), so \(y \in h(n, c_n) \) for some \(c_n \in C \). Then \(y \in st(c_n, G_n) \) for infinitely many \(n \in \mathbb{N} \). It follows that \(c_n \in st(y, G_n) \) for infinitely many \(n \in \mathbb{N} \). From Remark 2.2, \(\langle c_n \rangle \) clusters at \(y \). Hence, \(y \in C \). □

The following lemma is proved by Martin in [11].

Lemma 2.4. A space is semi-stratifiable if and only if it is a \(c \)-semi-stratifiable \(\beta \)-space.

Proof. The only if part is clear. Conversely, let \(X \) be a regular \(c \)-semi-stratifiable \(\beta \)-space. Let \(f \) be a \(c \)-semi-stratifiable-map and \(g \) be a \(\beta \)-map. Define \(h(n, x) = f(n, x) \cap g(n, x) \). It is clear that \(h \) is a \(c \)-semi-stratifiable, \(\beta \)-map. Since \(X \) is a regular and \(h \) is a \(c \)-semi-stratifiable, \(\beta \)-map, \(h(n + 1, x) \subseteq h(n, x) \) for all \(x \in X \) and all \(n \in \mathbb{N} \). Moreover, if \(x \in h(n, x_n) \) for \(n \in \mathbb{N} \), then the sequence \(\langle x_n \rangle \) has a cluster point. Now to prove that \(h \) is a semi-stratifiable-map, let \(x \in h(n, x_n) \) for \(n \in \mathbb{N} \). We must prove that the sequence \(\langle x_n \rangle \) is convergent to \(x \).

The sequence \(\langle x_n \rangle \) has at least one cluster point. Moreover, it is easy to show that every subsequence of \(\langle x_n \rangle \) also has at least one cluster point. Suppose \(p \) is a cluster point of \(\langle x_n \rangle \) and that \(p \neq x \). Choose a subsequence of \(\langle x_{n_i} \rangle \) of \(\langle x_n \rangle \) such that \(x_{n_i} \in g(i, p) \) for \(i \in \mathbb{N} \) and \(x \neq x_{n_i} \) for all \(i \). Since every subsequence of \(\langle x_{n_i} \rangle \) has a cluster point, it follows that \(\langle x_{n_i} \rangle \) converges to \(p \). Therefore \(K = \{p\} \cup \{x_{n_i}\} \) is compact. There exists \(m \in \mathbb{N} \) such that \(x \notin h(m, K) \). Choose \(k > m \) such that \(x_k \in K \); then \(x \notin h(m, x_k) \). But \(h(k, x_k) \subseteq h(m, x_k) \), so \(x \notin h(k, x_k) \), which is a contradiction. It follows that \(x \) is the only cluster point of \(\langle x_n \rangle \). Since every subsequence of \(\langle x_n \rangle \) has a cluster point, necessarily \(\langle x_n \rangle \) converges to \(x \). □

Theorem 2.5. A space is developable if and only if it is a quasi-developable \(\beta \)-space.

Proof. The only if part is clear. The converse follows from Lemma 2.4 and Theorem 2.3.

Corollary 2.6. A space \(X \) is developable if and only if \(X \) is a \(w\Delta \)-space with a quasi-\(G^*_\delta \)-diagonal.

Proof. This follows from [13, Theorem 3.1] since every \(w\Delta \)-space is \(\beta \)-space. □

Theorem 2.7. A space \(X \) is developable if and only if it is \(\beta \), quasi-\(\gamma \)-space with a quasi-\(G^*_\delta \)-diagonal.

Proof. The necessity of the conditions is obvious. Conversely, let \(f \) be a \(\beta \)-map and \(g \) a quasi-\(\gamma \)-map of \(X \). Define \(h(n, x) = f(n, x) \cap g(n, x) \). It is clear that \(h \) is a \(\beta \) and quasi-\(\gamma \)-map of \(X \). We prove that \(h \) is a \(w\Delta \)-map of \(X \). Let \(\{x, x_n\} \subset h(n, y_n) \). By the \(\beta \)-condition, \(\langle y_n \rangle \) converges and so by the quasi-\(\gamma \)-condition, \(\langle x_n \rangle \) has a
cluster point. Thus h is $w\Delta$-map of X. From Corollary 2.6, it follows that X is a developable space.

Corollary 2.8. A space is metrizable if and only if it is a wM-space with a quasi-G^*_δ-diagonal.

Proof. Let X be a regular, wM-space with a quasi-G^*_δ-diagonal. Every wM-space is a $w\Delta$-space so that (by Corollary 2.6) X is developable. Every developable, wM-space is metrizable, hence this completes the proof.

Question 1. Is every quasi-$w\Delta$-space (quasi-wM-space) with G^*_δ-diagonal necessarily developable (metrizable)?

We answer this question negatively.

Example 2.9. There is a p-adic analytic manifold which is separable, submetrizable, quasi-wM, quasi-developable, but not perfect ([12, Example 7.4.7]). This example can also serve as a quasi-semi-stratifiable space (see [8] for the definition) which has a G^*_δ-diagonal but which is not semi-stratifiable.

Example 2.10. There is a quasi-developable manifold which has a G_δ-diagonal but not a G^*_δ-diagonal (see [3, Example 2.2]) This example can also serve as a quasi-$w\Delta$ manifold which is not $w\Delta$. (It is not even a β-manifold).

Acknowledgement. The author is grateful to Professor David Gauld for his kind help and valuable comments and suggestions on this paper.

References

Abdul M. Mohamad
Department of Mathematics and Statistics
College of Science
Sultan Qaboos University
Muscat
OMAN
mohamad@squ.edu.om