Abstract. In 2000, we showed the Mohebi–Radjabalipour Conjecture under an additional condition, and obtained an invariant subspace theorem concerning subdecomposable operators. In this paper, we obtain a stronger result that the invariant subspace lattice for a class of these operators is rich. The result accurately characterize the invariant subspace lattice for the class of operators.

In [10], Mohebi and Radjabalipour raised the following conjecture.

The Mohebi–Radjabalipour Conjecture (see [10], p. 236). Assume the op­erators $T \in B(X)$ and $B \in B(Z)$ on Banach spaces X and Z, and the nonempty open set G in the complex plane C, satisfy the following conditions:

1. $qT = Bq$ for some injective $q \in B(X, Z)$ with a closed range qX;

2. There exist sequences $\{G(n)\}$ of open sets and $\{M(n)\}$ of invariant sub­spaces of B such that $\overline{G(n)} \subset G(n + 1)$, $G = \bigcup_n G(n)$, $\sigma(B|M(n)) \subset C \setminus G(n)$ and $\sigma(B/M(n)) \subset \overline{G(n)}$, $n = 1, 2, \cdots$;

3. $\sigma(T)$ is dominating in G.

Then T has a nontrivial invariant subspace.

It is easy to see that the Mohebi–Radjabalipour Conjecture, if true, will contain the main results of [1–4, 6–8, 10] (and others) as special cases.

In [8], using the S. Brown Technique, we proved the Mohebi–Radjabalipour Conjecture under an additional condition, and obtained the invariant subspace theorem concerning subdecomposable operators as follows:

Theorem A. Assume the operators $T \in B(X)$ and $B \in B(Z)$ on Banach spaces X and Z, and the nonempty open set G in C, satisfy conditions (1), (2) and (3) in the Mohebi–Radjabalipour Conjecture and the following additional condition:

4. $\{qX + M(n)\}$ is a sequence of closed sets in Z.

Then T has a nontrivial invariant subspace.

In this paper, we obtain a stronger result, which accurately characterize the invariant subspace lattice for a class of operators in Theorem A. This result is as follows.

2000 AMS Mathematics Subject Classification: 47A15, 47B40.

Key words and phrases: Banach space, bounded linear operator, invariant subspace lattice, essential spectrum.

The research was supported by the Foundation of Education Committee of Fujian Province of P.R. China.
Theorem 1. Assume the operators $T \in B(X)$ and $B \in B(Z)$ on Banach spaces X and Z, and the nonempty open set G in C, satisfy the conditions (1), (2), (3) and (4) in Theorem A, then T has a non-trivial invariant subspace. In particular, if the essential spectrum $\sigma_e(T)$ of T is dominating in G, then the invariant subspace lattice $\text{Lat}(T)$ for T is rich.

To prove Theorem 1 we first recall some basic notation and facts, and give some lemmas.

We denote by $H^\infty(G)$ the Banach algebra of all bounded analytic functions on G equipped with the norm $\|f\| = \sup\{|f(\lambda)|; \lambda \in G\}$. It is well known that $H^\infty(G)$ is a w^*-closed subspace of $L^\infty(G)$ relative to the duality $(L^1(G), L^\infty(G))$ and that a sequence $\{f_k\}$ in $H^\infty(G)$ converges to zero relative to w^*-topology if and only if it is norm-bounded and converges to zero uniformly on each compact subset of G. In particular, we can identify $H^\infty(G)$ with the dual space of the Banach space $Q = L^1(G)/(H^\infty(G))L$. Since Q is separable, it follows from the characterization of w^*-convergent sequences in $H^\infty(G)$ that for each $\lambda \in G$, the point evaluation $E_\lambda : H^\infty(G) \to C, f \to f(\lambda)$, is a w^*-continuous linear functional.

A subset σ of the complex plane C will be called dominating in the open set G if $\|f\| = \sup\{|f(\lambda)|; \lambda \in \sigma \cap G\}$ holds for all $f \in H^\infty(G)$.

Let E be a Banach space, then $\text{Lat}(E)$ denote the lattice of all closed linear subspace of E. Let X be a Banach space and let $T \in B(X)$, then the invariant subspace lattice $\text{Lat}(T)$ for T is called to be rich if there exists an infinite dimensional Banach space E such that $\text{Lat}(T)$ contains a sublattice order isomorphic to $\text{Lat}(E)$.

It is easy to see that if $\sigma(T) \neq \sigma_e(T)$ and $\dim(X) \geq 2$, then T has an invariant subspace.

Throughout the rest of this paper, we shall assume that $X, Z, T, B, q, G, G(n)$ and $M(n)$ are as in Theorem 1, and that $\sigma_e(T)$ is dominating in G.

Lemma 2 ([8], Lemma 3). Define $\tilde{B} : qX \to qX$ by $\tilde{B}z = Bz$, and define $\tilde{q} : X \to qX$ by $\tilde{q}x = qx$. Then $\tilde{B} \in B(qX)$, $\tilde{q} \in B(X, qX)$ and

1. For any polynomial p, for any vectors $\tilde{z} \in qX$ and $z^* \in Z^*$, we have
 $\langle \tilde{z}, p(\tilde{B}^*)\tilde{z}^* \rangle = \langle \tilde{z}, p(B^*)z^* \rangle$,
 where \tilde{z}^* denotes the restriction of z^* onto qX, that is, $\tilde{z}^* = z^*|qX$.

2. For any $x \in X$ and $z^* \in Z^*$, we have $\langle x, q^*z^* \rangle = \langle x, q^*z^* \rangle$ and $\|q^*z^*\| = \|q^*z^*\|$, where $\tilde{z}^* = z^*|qX$.

By [8, p.20], we have $M(n)^{-1}|qX \subset M(n + 1)^{-1}|qX$, $\sigma \left(\tilde{B}^* | (M(n)^{-1}|qX) \right) \subset G(n) \subset G$ for $n = 1, 2, \cdots$. Set

$M(G) = \cup_n (M(n)^{-1}|qX)$.

Then for any $x \in X$, $\tilde{z}^* \in M(G)$, there exists a natural number $n \geq n_0$ such that $\tilde{z}^* \in M(n)^{-1}|qX$, where n_0 is defined by [8, Note 2]. Therefore we can define a functional $x \otimes \tilde{z}^* : H^\infty(G) \to C$ by

$x \otimes \tilde{z}^*(f) = \langle x, q^*f(\tilde{B}_{n}^*)\tilde{z}^* \rangle$,
where \(\tilde{B}_n^* \) denotes \(\tilde{B}^*(M(n)^+|qX) \), and \(f(\tilde{B}_n^*) \) is defined by the Riesz–Dunford functional calculus with analytic functions. By [8], \(x \otimes \tilde{z}^* \) is a well-defined \(w^* \)-continuous linear functional which is independent of the particular choice of \(n \).

Lemma 3 ([8], Lemma 8). Let \(r, s \) be natural numbers. Consider non-negative real numbers \(c_1, c_2, \cdots, c_r \) with \(c_1 + c_2 + \cdots + c_r = 1 \) and complex numbers \(\lambda_1, \lambda_2, \cdots, \lambda_r \in \sigma_{le}(T^*) \cap G \), where \(\sigma_{le}(T^*) \) denotes the left essential spectrum of \(T^* \). If \(a_1, a_2, \cdots, a_s \in X, \tilde{b}^*_1, \tilde{b}^*_2, \cdots, \tilde{b}^*_s \in M(G) \) and \(\varepsilon > 0 \) are arbitrary, then there are vectors \(x \in X, \tilde{z}^* \in M(G) \) such that \(||x|| \leq 3, ||\tilde{q}^*\tilde{z}^*|| \leq 2 \) and

\[
\begin{align*}
(1) \quad &|| (c_1 E_{\lambda_1} + c_2 E_{\lambda_2} + \cdots + c_r E_{\lambda_r}) - x \otimes \tilde{z}^* || \leq \varepsilon, \\
(2) \quad &|| x \otimes \tilde{b}^*_j || \leq \varepsilon, \quad ||a_j \otimes \tilde{z}^*|| \leq \varepsilon, \quad j = 1, 2, \cdots, s.
\end{align*}
\]

Lemma 4 (cf. [9], Lemma 1.5). Let \(r, s \) be natural numbers. Consider complex numbers \(c_1, c_2, \cdots, c_r \) with \(||c_1|| + ||c_2|| + \cdots + ||c_r|| \leq 1 \) and complex numbers \(\lambda_1, \lambda_2, \cdots, \lambda_r \in \sigma_{le}(T^*) \cap G \). If \(a_1, a_2, \cdots, a_s \in X, \tilde{b}^*_1, \tilde{b}^*_2, \cdots, \tilde{b}^*_s \in M(G) \) and \(\varepsilon > 0 \) are arbitrary, then there are vectors \(x \in X, \tilde{z}^* \in M(G) \) such that \(||x|| \leq 12, ||\tilde{q}^*\tilde{z}^*|| \leq 8 \) and

\[
\begin{align*}
(1) \quad &|| (c_1 E_{\lambda_1} + c_2 E_{\lambda_2} + \cdots + c_r E_{\lambda_r}) - x \otimes \tilde{z}^* || < \varepsilon, \\
(2) \quad &|| x \otimes \tilde{b}^*_j || < \varepsilon, \quad ||a_j \otimes \tilde{z}^*|| < \varepsilon, \quad j = 1, 2, \cdots, s.
\end{align*}
\]

We now denote by \(Q_0 \) the set of those elements \(L \) in \(Q = L^1(G)/H^\infty(G) \) which can be almost factorized in the following sense:

Given a natural number \(s \), vectors \(a_1, a_2, \cdots, a_s \in X, \tilde{b}^*_1, \tilde{b}^*_2, \cdots, \tilde{b}^*_s \in M(G) \) and real number \(\varepsilon > 0 \), there are vectors \(x \in X, \tilde{z}^* \in M(G) \) such that \(\max(||x||, ||\tilde{q}^*\tilde{z}^*||) \leq 1, ||L - x \otimes \tilde{z}^*|| < \varepsilon, \) and

\[
\max\{||x \otimes \tilde{b}^*_j||; j = 1, 2, \cdots, s\} < \varepsilon, \quad \max\{||a_j \otimes \tilde{z}^*||; j = 1, 2, \cdots, s\} < \varepsilon.
\]

It is easy to see that the space \(Q_0 \) is a norm-closed subset of \(Q \).

Lemma 5. If the right essential spectrum \(\sigma_{re}(T) \) of \(T \) is dominating in \(G \), then \(\{L \in Q; ||L|| \leq 1/96\} \subset Q_0 \).

Proof. Since \(\sigma_{le}(T^*) = \sigma_{re}(T) \) is dominating in \(G \), it follows from [5, Proposition 2.8] that the closed absolutely-convex hull of the set \(\{E_\lambda; \lambda \in \sigma_{le}(T^*) \cap G\} \) is precisely the closed unit ball in \(Q \). On the other hand, by Lemma 4 we have \(\text{aco}(1/96)E_\lambda; \lambda \in \sigma_{le}(T^*) \cap G \subset Q_0 \), where \(\text{aco}(M) \) denotes absolutely-convex hull of \(M \subset C \). Consequently, we obtain

\[
\{L \in Q; ||L|| \leq 1/96\} = \text{aco}\{1/96)E_\lambda; \lambda \in \sigma_{le}(T^*) \cap G\} \subset Q_0.
\]

So the proof of Lemma 5 is complete. \(\square \)

Let \(E \) be a nonempty set and \(m \) a natural number, then we define

\[
E^m = \{(x_1, x_2, \cdots, x_m); x_1, x_2, \cdots, x_m \in E\},
\]

\[
M(m, E) = \{(x_{jk}); x_{jk} \in E, j, k = 1, 2, \cdots, m\}.
\]

We write \(M(\infty, E) \) for the set of all infinite matrices \((x_{jk})_{j,k \geq 1} \) with coefficients \(x_{jk}(j, k = 1, 2, \cdots) \) in \(E \).
Lemma 6. If the right essential spectrum $\sigma_{re}(T)$ of T is dominating in G, then for each matrix $L = (L_{jk})_{j,k \geq 1} \in M(\infty, Q)$, there are sequences $\{x_m\}$ and $\{z_m^*\}$ such that

1. $x_m \in X^m$, $z_m^* \in [M(G)]^m$;

2. for each natural number j, the limits
 \[
 x(j) = \lim_{m \to \infty} x_m(j) \in X, \quad x^*(j) = \lim_{m \to \infty} q^* z_m^*(j) \in X^*
 \]
 exist, where $x_m(j)$ and $z_m^*(j)$ denote the jth components of x_m and z_m^* respectively;

3. for all natural number j,k, we have
 \[
 L_{jk} = \lim_{m \to \infty} x_m(j) \otimes z_m^*(k),
 \]
 where the limit is taken in Q.

Proof. Using Lemma 5, the proof of Lemma 6 is similar to that of Proposition 2.6 in [7] and is therefore omitted. \square

Proof of Theorem 1. We consider the two cases separately:

Case 1. If $\sigma_{re}(T)$ is not dominating in G, then it follows from the condition 3 in Theorem 1 that there is a point $\mu \in (\sigma_e(T) \setminus \sigma_{re}(T)) \cap G$. Therefore $\text{Ker}(\mu - T)$ is an infinite dimensional Banach space. Obviously, the lattice $\text{Lat}(\text{Ker}(\mu - T))$ of all closed linear subspaces of the Banach space $\text{Ker}(\mu - T)$ is a sublattice of $\text{Lat}(T)$. Hence $\text{Lat}(T)$ is rich.

Case 2. If $\sigma_{re}(T)$ is dominating in G, then for any given point $\lambda \in G$, by Lemma 6 we can choose sequences $\{x_m\}, \{z_m^*\}, \{x(j)\}$ and $\{x^*(k)\}$ which satisfy conditions (1), (2) and (3) in Lemma 6 with respect to the matrix $L = (L_{jk})_{j,k \geq 1} = (\delta_{jk} E_{\mu})_{j,k \geq 1} \in M(\infty, Q)$, where δ_{jk} denotes the Kronecker delta. Therefore for any natural numbers m, k there exists a natural number $n = n(m, k)$ such that $z_m^*(k) = z_m^*(k)|qX$ with $z_m^*(k) \in M(n(m, k))$. Consequently for each polynomial $p \in C[z]$ in one complex variable, by Lemma 2 and the condition (1) in Theorem 1 we obtain

\[
\delta_{jk} p(\lambda) = \delta_{jk} E_\lambda(p) = \lim_{m \to \infty} x_m(j) \otimes z_m^*(k)(p)
\]

\[
= \lim_{m \to \infty} \langle x_m(j), q^* p(\bar{B}_{n(m,k)}) z_m^*(k) \rangle
\]

\[
= \lim_{m \to \infty} \langle x_m(j), q^* p(B^*) z_m^*(k) \rangle
\]

\[
= \lim_{m \to \infty} \langle x_m(j), p(T^*) q^* z_m^*(k) \rangle
\]

\[
= \lim_{m \to \infty} \langle p(T) x_m(j), q^* z_m^*(k) \rangle
\]

\[
= \langle p(T) x(j), x^*(k) \rangle
\]

(1)
for all natural numbers \(j, k\). Set

\[
U = \text{span}\{p(T)x(j); p \in \mathbb{C}[z], j = 1, 2, \cdots\},
\]

\[
V = \text{span}\{p(T)(\lambda - T)x(j); p \in \mathbb{C}[z], j = 1, 2, \cdots\}.
\]

Then \(U, V \in \text{Lat}(T)\), and \(V \subset U\), \((\lambda - T)U \subset V\). For every natural number \(k\), define the functional \(\phi_k : U/V \rightarrow \mathbb{C}\) by

\[
\phi_k(x + V) = \langle x, x^*(k) \rangle.
\]

It is easy to see that \(\phi_k\) is a well-defined bounded linear functional on \(U/V\). Also, by (1) we obtain

\[
\phi_k(x(j) + V) = \langle x(j), x^*(k) \rangle = \delta_{jk}.
\]

Therefore \(U/V\) is an infinite dimensional Banach space. If \(\pi : U \rightarrow U/V\) is the canonical quotient map, then the map \(\tau : \text{Lat}(U/V) \rightarrow \text{Lat}(T), S \rightarrow \pi^{-1}(S)\), is a lattice embedding, where \(\text{Lat}(U/V)\) denotes the lattice of all closed linear subspaces of the Banach space \((U/V)\). Consequently \(\text{Lat}(T)\) is rich, and this concludes the proof of Theorem 1.

Acknowledgment. The author thanks the referee for his valuable suggestion.

References

Mingxue Liu
Department of Mathematics
Changsha University
Changsha 410003
Hunan
PEOPLE’S REPUBLIC of CHINA
liumingxue888@163.com