WEIGHTS FOR THE SIMPLE Ree GROUPS $^2G_2(q^2)$

JIANBEI AN

(Received January 1993)

Abstract. This paper is part of a program to study the weight conjecture of J.L. Alperin for finite groups of Lie type. The local structures of radical subgroups of a simple Ree group $^2G_2(q^2)$ are given and the conjecture has been proved for $^2G_2(q^2)$.

Introduction

Let G be a finite group and r a prime. Denote by $O_r(G)$ the largest normal r-subgroup of G. Let R be an r-subgroup of G, and let C and N be the centralizer $C_G(R)$ and normalizer $N_G(R)$ of R in G, respectively. Following [2], R is a radical r-subgroup of G if $R = O_r(N)$. From [2] p. 3, an irreducible character φ of N is called a weight character of G if φ is trivial on R and in an r-block of defect 0 of N/R. If such a character φ exists, then R is necessarily a radical subgroup of G. A pair (R, φ) of an r-subgroup R and an irreducible character φ of N is called a weight if φ is a weight character. A weight (R, φ) is always identified with its G-conjugates. Let $B(\varphi)$ be the r-block of N containing φ. A weight (R, φ) is called a B-weight for a block B of G if $B = B(\varphi)^G$, that is, B corresponds to $B(\varphi)$ by the Brauer homomorphism. Alperin in [1] conjectured that the number of weights of G should equal the number of irreducible Brauer characters. Moreover, this equality should hold block by block.

The truth of this conjecture has been proved for several classes of groups. In [2–6] Alperin, Fong and the author verified the conjecture for symmetric, general linear, and unitary groups, and for odd-dimensional special orthogonal groups when the characteristic r of the modular representation is odd. Moreover, the numbers of weights for blocks were given for all classical groups except when the defining characteristic of a group is even and r is odd. In [7] and [8] the author verified the conjecture for the Chevalley group $G_2(q)$ and the Steinberg triality group $^3D_4(q)$ for all primes r. In [2] Michler and Olsson verified the conjecture for the covering groups of symmetric and alternating groups when r is odd. In addition several equivalent statements were given, say [18]. In this paper we prove the conjecture for the simple Ree groups $^2G_2(q^2)$ for all r, where q^2 is an odd power of 3. If an r-block B of G has a trivial defect group D, then both the number of irreducible Brauer characters and the number of B-weights are 1 as $N_G(D) = C_G(D) = G$. Moreover, if an r-block B of G has a cyclic defect group, then the conjecture for B follows by Theorem 3.8 of [18] and Theorems 8.3 and 9.1 of [11]. The proof in this paper, however, deals with both cyclic and non-cyclic cases. We may always suppose r is different from 3 since the result is known when r is 3 (see [1]).

In Section 1 we describe local structures of radical r-subgroups of $^2G_2(q^2)$. In Section 2 we classify the blocks and count numbers of irreducible Brauer characters of blocks. The conjecture is proved in Section 3.

1991 AMS Mathematics Subject Classification: Primary 20C20, Secondary 20G40.
1. The Radical Subgroups

Let r be a prime different from 3, $q^2 = 3^{2m+1}$ for some $m \geq 0$, and let $G = 2^2G_2(q^2)$. Note that q is not an integer. Thus the Ree group G is simple for $m \geq 1$ and $2^2G_2(3)$ is isomorphic to $PTL_2(8)$. In this section, we shall determine the local structures of radical r-subgroups of G. For simplicity, we always suppose that $m \geq 1$.

Throughout this paper we shall follow the notation of [16], [17], and [22]. In particular, if X and Y are groups, then $X \rtimes Y$ denotes a semidirect product of X and Y with $X \triangleleft X \times Y$, and $X \circ Y$ or simply XY denotes a central product of X and Y. Given a non-negative integer m, we denote D_{2m} a dihedral group of order $2m$, and write \mathbb{Z}_m for the cyclic group of order m. We also denote by $L_m(q^2)$ the group $PSL_m(q^2)$.

Let $G = 2^2G_2(q^2)$ be the Ree group of type G_2. Then the order of G is

$$|G| = q^6(q^2 - 1)(q^2 + \sqrt{3}q + 1)(q^2 - \sqrt{3}q + 1)$$

and G contains 4 conjugacy classes of maximal tori with the representatives T_1, T_2, T_3, and T_4. Their structure is

$$T_1 \simeq \mathbb{Z}_{q^2-1} \simeq \langle u \rangle \times \mathbb{Z}_{\frac{1}{2}(q^2-1)},$$
$$T_2 \simeq \langle u \rangle \times \mathbb{Z}_{\frac{1}{2}(q^2+1)} \simeq \langle u \rangle \times \langle u' \rangle \times \mathbb{Z}_{\frac{1}{2}(q^2+1)},$$
$$T_3 \simeq \mathbb{Z}_{q^2+\sqrt{3}q+1},$$
$$T_4 \simeq \mathbb{Z}_{q^2-\sqrt{3}q+1},$$

where u and u' are commuting involutions. Each element t in $\bigcup_{i=1}^4 T_i \setminus \langle u, u' \rangle$ is regular (cf. [16], p. 872), so that $C_G(t) = T_i$ whenever $t \in T_i$. In addition, G has a unique conjugacy class of involutions and a unique class of four-groups, and a Sylow 2-subgroup S of G is elementary abelian of order 8. It follows by Theorem C of [17] that

$$C_G(u) \simeq \mathbb{Z}_2 \times L_2(q^2)$$
$$C_G(\langle u, u' \rangle) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \times D_{\frac{1}{2}(q^2+1)},$$

$$C_G(S) = S$$

Moreover, by [22] and Theorem C of [17] (cf. also [16], p. 873)

$$N_G(\langle t_1 \rangle) = T_1 \rtimes \mathbb{Z}_2$$
$$N_G(\langle t_2 \rangle) = T_2 \rtimes \mathbb{Z}_6$$
$$N_G(\langle t_3 \rangle) = T_3 \rtimes \mathbb{Z}_6$$
$$N_G(\langle t_4 \rangle) = T_4 \rtimes \mathbb{Z}_6$$

$$N_G(\langle u \rangle) = C_G(u) = \mathbb{Z}_2 \times L_2(q^2),$$
$$N_G(\langle u, u' \rangle) = (\mathbb{Z}_2 \times \mathbb{Z}_2 \times D_{\frac{1}{2}(q^2+1)}) \rtimes \mathbb{Z}_3,$$
$$N_G(S) = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_7 \times \mathbb{Z}_3.$$

Suppose that r divides $|G|$. If $r \neq 2$, then a Sylow r-subgroup S is a Sylow r-subgroup of a maximal torus, so that it is cyclic by (1.2). Thus a radical r-subgroup
WEIGHTS FOR THE SIMPLE REE GROUPS $^2G_2(q^2)$

R is also cyclic. If $r = 2$, then $S = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, so a radical 2-subgroup R is elementary abelian. In both cases $R \leq C_G(R)$ and $C_G(R) \leq N_G(R)$. Since $O_r(C_G(R))$ is a characteristic subgroup of $C_G(R)$, it follows that $O_r(C_G(R)) \leq O_r(N_G(R))$. But R is radical, so $R = O_r(N_G(R))$, and $O_r(C_G(R)) \leq R$. Similarly, $R \leq O_r(C_G(R))$ as $R \leq C_G(R)$. Thus R is the maximal normal r-subgroup of $C_G(R)$.

If $r \neq 2$ and $|R| \neq 1$, then $C_G(R)$ is a maximal torus T of G as a generator of R is regular. Thus $R = O_r(T)$, R is a Sylow r-subgroup of G, and $N_G(R)$ is given by (1.4). If $r = 2$ and $|R| \neq 1$, then $|R| \in \{2, 4, 8\}$. Since G has a unique class of involutions and a unique class of four-groups, we may suppose that $R \in \{\langle u \rangle, \langle u, u' \rangle, S\}$, where S is a Sylow 2-subgroup of G. Conversely, if $R \in \{\langle u \rangle, \langle u, u' \rangle, S\}$, then $R = O_2(C_G(R))$ by (1.3) and R is radical by (1.4). The centralizer and normalizer of R are given by (1.3) and (1.4), respectively. Thus we have proved the following proposition.

Proposition (1A). Let R be a (non-trivial) radical r-subgroup of $G = ^2G_2(q^2)$, $N = N_G(R)$, and $C = C_G(R)$. Suppose that r divides $|G|$. Then up to conjugacy in G the following assertions hold:

(a) $r \neq 2$ and R is a Sylow r-subgroup of G. In addition C is a maximal torus T_i of G and $N/C \simeq \mathbb{Z}_2$ or \mathbb{Z}_6 according as $i = 1$ or $i \in \{2, 3, 4\}$.

(b) $r = 2$ and $R \in \{\langle u \rangle, \langle u, u' \rangle, S\}$, where S is a Sylow 2-subgroup of G. In addition, if $|R| = 2$, then $N = C = \mathbb{Z}_2 \times L_2(q^2)$. If $|R| = 4$, then $C = R \times D_{\frac{q}{2} + 1}(q^2 + 1)$ and $N = C \times \mathbb{Z}_3$. If $R = S$, then $C = R$ and $N/C \simeq \mathbb{Z}_7 \times \mathbb{Z}_3$.

2. The Blocks

The notation and terminology of Section 1 are continued in this section. The blocks and the number of irreducible Brauer characters of a block of $^2G_2(q^2)$ are given in this section.

Let R be an r-subgroup of a finite group G, $C = C_G(R)$, and $N = N_G(R)$. Let B be an r-block of G. If b is an r-block of C, then (R, b) is called a Brauer (r-)pair of G (by Alperin/Broué), and is a B-pair if $B = bG$. Thus (R, b) is a B-pair if and only if $(1, B) \leq (R, b)$. In addition pairs $(1, B)$ correspond to blocks B of G. We denote by $\text{Irr}(G)$ and $\text{Irr}(B)$ the sets of irreducible characters of G and B, respectively.

Let $G = ^2G_2(q^2)$ and let G^* be its dual group. Then G and G^* are isomorphic (cf. [10], p. 120), and we shall identify them. Let s be a semisimple element of G, and let (s) be the conjugacy class of s in G. Following [9], p.57, we denote by $\mathcal{E}(G, (s))$ the set of the irreducible constituents of Deligne-Lusztig generalized characters associated with (s) (cf. [9], p. 57). Moreover given a semisimple r'-element s of G, let

$$\mathcal{E}_r(G, (s)) = \bigcup_y \mathcal{E}(G, (sy)),$$

where y runs over all the r'-elements of $C_G(s)$. By Theorem 2.2 of [9], $\mathcal{E}_r(G, (s))$ is a union of r-blocks. An irreducible character in $\mathcal{E}(G, (1))$ is an irreducible unipotent character. Thus G has 8 irreducible unipotent characters, the trivial character
\(\xi_1 = 1 \), the Steinberg character \(\xi_3 = St \), and 6 cuspidal unipotent characters \(\xi_5 - \xi_{10} \) in the notation of \([22]\) (see \([10]\), pp. 488, 489). We say that a character \(\chi \in \text{Irr}(G) \) is of \(r \)-defect 0 if the \(r \)-part \(\chi(1)_r \) of the degree \(\chi(1) \) equals the \(r \)-part \(\#G _r \) of \(\#G \). If \(\chi \) is of defect 0, then the block \(B(\chi) \) of \(G \) containing \(\chi \) has the trivial defect group and \(|\text{Irr}(B)| = 1 \). Given a semisimple \(r' \)-element \(s \) of \(G \), let \(\mathcal{E}_r(G, (s))' \) be the subset of characters in \(\mathcal{E}_r(G, (s)) \) with a non-zero \(r \)-defect. Thus \(\mathcal{E}_r(G, (s))' \) is also a union of \(r \)-blocks by \([9]\), Theorem 2.2.

Proposition (2A). Let \(G = 2G_2(q^2) \) and let \(B \) be an \(r \)-block of \(G \) with a non-trivial defect group \(D \). Suppose that \(B \subseteq \mathcal{E}_r(G, (s)) \) for some semisimple \(r' \)-element \(s \) of \(G \).

(a) Suppose that \(r \neq 2 \). Then \(B = \mathcal{E}_r(G, (s))' \) and \(D \) is a Sylow \(r \)-subgroup of \(G \).

(b) Suppose that \(r = 2 \). Then \(B = \mathcal{E}_r(G, (s))' \) and \(D \in \{ \langle u \rangle, \langle u, u' \rangle, S \} \).

(c) If \(\ell(B) \) is the number of irreducible Brauer characters in \(B \), then

\[
\ell(B) = \begin{cases}
2 & \text{if } r \neq 2 \text{ and } |s| = 2, \\
2 & \text{if } r \text{ divides } \frac{1}{2}(q^2 - 1) \text{ and } B \text{ is the principal block,} \\
6 & \text{if } r \neq 2, r \text{ does not divide } \frac{1}{2}(q^2 - 1), \text{ and } B \text{ is the principal block,} \\
5 & \text{if } r = 2 \text{ and } B \text{ is the principal block,} \\
1 & \text{otherwise.}
\end{cases}
\]

Proof. (1) Suppose that \(r \neq 2 \). By Proposition 3.2 of \([16]\) \(B = \mathcal{E}_r(G, (s))' \) and since \(r \neq 3, r \) is a good prime (cf. \([10]\), p. 183). By Theorem 5.1 of \([14]\) the restrictions of characters in \(\mathcal{E}(G, (s)) \) to the \(r \)-regular elements form a basic set of Brauer characters in \(\mathcal{E}_r(G, (s)) \). Since irreducible Brauer characters are linear independent and the restriction of each character in \(\text{Irr}(B) \) to the \(r \)-regular elements is a linear combination of irreducible Brauer characters in \(B \), it follows that \(\ell(B) = |\mathcal{E}(G, (s))'| \). If \(s = 1 \), then \(B = \mathcal{E}_r(G, (1))' \) is the principal block and by the degrees of unipotent characters given by Lemma 3.1 of \([16]\), \(|\mathcal{E}(G, (1))'| = 2 \) or 6 according as \(r \) divides or does not divide \(q^2 - 1 \). Thus (c) holds. If \(s \neq 1 \), then (c) follows by \(|\mathcal{E}(G, (s))| = |\mathcal{E}(C_G(s), (1))| \).

(2) Suppose that \(r = 2 \). By \([22]\) or \([19]\), p. 83 the principal block \(B_1 \) has 8 irreducible characters and 5 irreducible Brauer characters. If \(\xi \in \mathcal{E}_2(G, (t)) \), then \(\xi(1) = |G: C_G(t)| \cdot \lambda(1) \), where \(\lambda \) is an irreducible unipotent character of \(C_G(t) \). But \(\mathcal{E}_2(G, (1)) = \mathcal{E}(G, (1)) \cup \mathcal{E}(G, (u)) \), so by the degrees of irreducible characters in \([22]\), \(\mathcal{E}_2(G, (1)) = \{ \xi_i : 1 \leq i \leq 10 \} \), where \(\xi_i \) are given by \([22]\), p. 87. Since \(\mathcal{E}_2(G, (1)) \) has two irreducible unipotent characters, \(\xi_9 \) and \(\xi_{10} \) of defect 0, it follows that \(B_1 = \mathcal{E}_2(G, (1))' \).

Suppose that a defect group \(D \) of \(B \) has order 2 or 4. Then we may suppose that \(D = \langle u \rangle \) or \(\langle u, u' \rangle \), so that \(C_G(D) = D \times L_2(q^2) \) or \(D \times D_{\frac{1}{2}}(q^2+1) \), respectively. By the Extended First Main Theorem of Brauer \([13]\), Theorem III.9.7 and Lemmas V.3.6, V.3.7, \(B = bG \) for some block \(b \) of \(C_G(D) \) with a defect group \(D \). If \(b \subseteq \)
\(\mathcal{E}_2(C_G(D), (t)) \) for some semisimple 2'-element \(t \) of \(C_G(D) \), then by [9], Theorem 3.2, \(t \) and \(s \) are conjugate in \(G \). We may suppose that \(s \in C_G(D) \), so that \(D \leq C_G(s) \). If \(|D| = 4 \), then by (1.2), we may suppose that \(s \in T_2 \) and so \(C_G(s) = T_2 \). Moreover \(C_G(sy) = T_2 \) for each \(y \in D = O_2(T_2) \). But a Deligne-Lusztig generalized character \(R_{T_2}(sy) \) has degree \((q^2 - 1)(q^4 - q^2 + 1) \) (see [10], Theorem 7.5.1) and by [22], p. 75, \(B \) has 4 irreducible characters of degree \((q^2-1)(q^4-q^2+1)\), so each \(\pm R_{T_2}(sy) \) is irreducible for a suitable sign \(\pm \). It follows that \(|\mathcal{E}_2(G, (s))| = 4 \) and \(B = \mathcal{E}_2(G, (s)) \). Suppose that \(|D| = 2 \). If \(s \in T_2 \), then each block contained in \(\mathcal{E}_2(G, (s)) \) has a defect group of order 4 as shown above. This contradiction implies that \(s \in T_1 \). A proof similar to above shows that \(B = \mathcal{E}_2(G, (s)) \) and \(|\text{Irr}(B)| = 2 \).

Finally we count \(\ell(B) \) for a non-principal block \(B \). Given semisimple 2'-element \(t \) of \(G \), let \(B_t \) be the block \(\mathcal{E}_2(G, (t))' \). Thus \(\ell(B_t) \geq 1 \) and \(\ell(B_1) = 5 \). By the character table of \(G \), [22], pp. 87–88, \(G \) has two blocks, denoted by \(B_1' \) and \(B_1'' \), of defect 0, and both are contained in \(\mathcal{E}_2(G, (1)) \). Thus \(\ell(B_1') = \ell(B_1'') = 1 \). By a result of Brauer the number of irreducible Brauer characters in \(G \) is equal to the number of conjugacy 2'-classes of \(G \). Thus

\[
2 + 5 + \sum_{t \neq 1} \ell(B_t),
\tag{2.1}
\]

is the number of 2'-classes of \(G \), where \(t \) runs over the representatives for the non-trivial semisimple conjugacy 2'-classes of \(G \). On the other hand two elements \(g \) and \(g' \) are conjugate in \(G \) if and only if both the semisimple parts \(g_s, g'_s \) and the unipotent parts \(g_u, g'_u \) of \(g \) and \(g' \) are conjugate in \(G \), respectively. Thus we may suppose that \(g_s = g'_s \), so \(g_u \) and \(g'_u \) are conjugate in \(C_G(g_s) \). For a semisimple 2'-element \(t \) of \(G \), let \(u(t) \) be the number of unipotent conjugacy classes of \(C_G(t) \). By Chapter III of [22] \(G \) has 7 unipotent conjugacy classes, so that \(u(1) = 7 \). Thus the number of conjugacy 2'-classes of \(G \) is

\[
7 + \sum_{t \neq 1} u(t),
\tag{2.2}
\]

where \(t \) runs over the representatives for the non-trivial semisimple conjugacy 2'-classes of \(G \). If \(t \neq 1 \), then \(C_G(t) \) is a maximal torus and so \(u(t) = 1 \). It follows by (2.1) and (2.2) that \(\ell(B_t) = 1 \) for \(t \neq 1 \). Thus (c) follows.

Remark. From (2A), Brauer's height conjecture and the Alperin-McKay conjecture for the group \(G = ^2G_2(q^2) \) can be verified easily. The truth of these two conjectures was also pointed out by G.O. Michler [20].

3. The Weights

The notation and terminology of Sections 1 and 2 are continued in this section. The numbers of weights of blocks of \(^2G_2(q^2) \) are given in this section.

Given a weight \((R, \varphi)\) of a finite group \(G \), let \(C = C_G(R), N = N_G(R), \) and let \(\theta \) be an irreducible constituent of the restriction \(\varphi|_{CR} \) of \(\varphi \) to \(CR \). By Clifford theory \(\theta \) acts trivial on \(R \) and has defect 0 as a character of \(CR/R \). Let \(N(\theta) \) be the stabilizer of \(\theta \) in \(N \). Denote by \(\text{Irr}^0(N(\theta), \theta) \) and \(\text{Irr}^0(N, \theta) \) the sets of irreducible
characters of $N(\theta)$ and N which cover θ and which have defect 0 as characters of $N(\theta)/R$ and N/R, respectively. Then $\varphi \in \text{Irr}^0(N,\theta)$ since φ has defect 0 as a character of N/R. By Clifford theory, the induction mapping $\psi \mapsto I(\psi) = \text{Ind}_{N(\theta)}^N(\psi)$ induces a bijection from $\text{Irr}^0(N,\theta)$ to $\text{Irr}^0(N,\theta)$.

The block b of CR containing θ has a defect group D by [13], Lemma 4.4. By [2], p. 3 all B-weights for a block B of G have the form $(R, I(\psi))$, where R runs over representatives for the conjugacy G-classes of radical subgroups, b runs over representatives for the conjugacy N-classes of blocks of CR such that b has defect group R and $b^G = B$, and ψ runs over $\text{Irr}^0(N(\theta),\theta)$. Here θ is the canonical character of b. If $b^G = B$ and R is a defect group of b, then by [13], Lemma V.6.1,

$$Z(D) \leq Z(R) \leq R \leq D$$

for some defect group D of B. In particular, $R = D$ whenever D is abelian.

Let $G = 2G_2(q^2)$ and let B be a block of G with a defect group D. Suppose that $B \subseteq \mathcal{E}_2(G, (s))$ for some semisimple r'-element s of G and suppose that (R, φ) is a B-weight. Then we may suppose that $R = D$ and $\varphi \in \text{Irr}^0(N,\theta)$, where $N = N_G(D)$ and θ is an irreducible constituent of the restriction $\varphi|_{C_G(D)}$ of φ to $C_G(D)$. Let $C = C_G(D)$ and let b be the block of C containing θ. Then $b^G = B$ and b has a defect group D. By the Extended First Main Theorem of Brauer C has only one N-class of blocks b' such that $b'^G = B$ as D is a defect group of B. Thus the number of B-weights is equal to $|\text{Irr}^0(N(\theta),\theta)|$.

If B is the principal block, then so is b by Brauer's Third Main Theorem, [13], Theorem V.6.2. Thus the canonical character θ of b is the trivial character of C. So $N(\theta) = N_G(D)$, and $\text{Irr}^0(N(\theta),\theta) = \text{Irr}(N(\theta)/C_G(D))$ as, by (1.4) r and $|N_G(D)/C_G(D)|$ are relatively prime. If $C_G(s)$ is a maximal torus T, then $D = O_r(T)$. As shown in the proof of (2A) (2) $\pm R_T(sy)$ is irreducible for a suitable sign \pm when $r = 2$. If $r \neq 2$, then a similar proof to that of (2A) (2) shows that $\pm R_T(sy)$ is also irreducible by using the degrees of characters in $\text{Irr}(B)$ and the character table of [22]. By Theorem 7.3.4 of [10] the character $\phi(s)$ in $\text{Irr}(T)$ is in the general position, in the sense of [10], p. 219, where $\phi(s)$ corresponds to s under the correspondence of Deligne-Lusztig. It follows by [10], Theorem 7.3.4 again that $N(\theta) = T$, so that $|\text{Irr}^0(N(\theta),\theta)| = 1$. In particular $N_{C_G(s)}(D)/C_G(D) = 1$.

Finally, suppose that $C_G(s)$ is not a maximal torus and $s \neq 1$. Then $r \neq 2$ and we may suppose that $s = u$. Thus $C_G(D)$ is a maximal torus T, $N_G(D) = N_G(T)$, and $C_G(s) = \langle s \rangle \times L_2(q^2)$. So $T = T_1$ or T_2. By [9], Theorem 3.2 we may suppose that $s \in T$ and $b = \mathcal{E}_r(T, (s))$. Let ϕ be an isomorphism from T to $\text{Irr}(T)$ such that ϕ induces the bijection between the conjugacy G-classes of (T,t) and the G-classes of $(T,\phi(t))$, where $t \in T$. Thus $\theta = \phi(s)$ as $b = \mathcal{E}_r(T, (s))$. If τ is an involution of $N_G(T)/T$, then τ centralizes each element of $O_2(T)$ as a Sylow 2-subgroup of G is abelian. Thus τ stabilizes each character in $\text{Irr}(T)$ of order 2, so that $\tau \in N(\theta)$. If $T = T_1$, then $N(\theta) = N_G(D)$. If $T = T_2$, then an element σ in $N_G(T)/T$ of order 3 permutes the three involutions of $O_2(T)$. Thus σ acts non-trivially on the three involutions of $\text{Irr}(T)$, so that $\sigma \notin N(\theta)$. In both cases $N(\theta)/T \cong \mathbb{Z}_2$. By Clifford theory $|\text{Irr}^0(N(\theta),\theta)| = 2$. Since $N_{C_G(s)}(D)/C_G(D) \cong \mathbb{Z}_2$, it follows that $|\text{Irr}^0(N(\theta),\theta)| = |\text{Irr}(N_{C_G(s)}(D)/C_G(D))|$. Thus we have proved the first part of the following theorem.
Theorem (3A). Let $G = 2G_2(q^2)$ and let B be an r-block of G with a non-trivial defect group D. Suppose that $B \subseteq \mathcal{E}_r(G,(s))$ for some semisimple $2'$-element s of G. Then we may suppose that $s \in C_G(D)$, so that $D \leq C_G(s)$.

(a) If $W(B)$ is the number of B-weights, then

$$W(B) = |\text{Irr}(N_{C_G(s)}(D)/C_G(D))|.$$

(b) $W(B)$ is the number $\ell(B)$ of irreducible Brauer characters in B.

Proof. (b) If $C_G(s)$ is a maximal torus, then by (2A) (c), $\ell(B) = 1$, so that $\ell(B) = W(B)$. If $r \neq 2$ and $|s| = 2$, then by (2A) (c), $\ell(B) = 2$, so that $\ell(B) = W(B)$. Thus we may suppose that B is the principal block, so that $C_G(s) = G$ and $N_{C_G(s)}(D) = N_G(D)$. If $r \neq 2$, then $C_G(D)$ is a maximal torus T and $N_G(D) = N_G(T)$. By (1.4) $N_G(T)/T \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_6 according as $T = T_1$ or $T \neq T_1$. In the former case r divides $q^2 - 1$ and in the latter case r does not divide $q^2 - 1$. Thus (b) follows by (a) and (2A) (c).

Finally suppose that $r = 2$. By [19], p. 84 $N_G(D)/C_G(D)$ is the Frobenius group F_{21} of order 21. Thus the Sylow 7-subgroup K of F_{21} is the Frobenius kernel and a Sylow 3-subgroup H is a Frobenius complement (cf. [15], p. 38). So $F_{21} = K \rtimes H$. By [15], Theorem 4.5.3 a generator of H stabilizes only the trivial character of K, so by Clifford theory, F_{21} has three linear characters and two irreducible characters of degree 3. It follows that $|\text{Irr}(F_{21})| = 5$ and (b) follows by (2A) (c). This completes the proof.

References

17. P. Kleidman, *The maximal subgroups of the Chevalley groups G_2(q) with q odd, the Ree groups 2G_2(q) and their automorphism groups*, J. Algebra **117** (1988), 30–71.

University of Auckland
Private Bag 92019
Auckland
NEW ZEALAND