ON THE LOCALISATION OF THE ABSOLUTE SUMMABILITY OF THE R-TH DERIVED SERIES OF FOURIER SERIES

Shiva Narain Lal

(received 17 January, 1977; revised 19 July, 1977)

1. Let S_n denote the nth partial sum of the series $\sum a_n$ and let $\sigma_n^{(a)}$ and $t_n^{(a)}$ denote the nth Cesàro means of order a ($a > -1$) of the sequences $\{S_n\}$ and $\{na_n\}$ respectively. Let r be a positive integer and $T_n^{(r)}$ denote the nth Cesàro sum of order r of the sequence $\{na_n\}$, so that

$$t_n^{(r)} = \frac{T_n^{(r)}}{A_n^{(r)}},$$

where

$$A_n^{(r)} = \frac{(n+1)(n+2)\cdots(n+r)}{1\cdot2\cdot3\cdots r}.$$

We write

$$R_n = \frac{1}{\log n} \sum_{v=1}^{n} \frac{S_v}{v}.$$

The series $\sum a_n$, or the sequence $\{S_n\}$, is said to be absolutely summable $(R, \log n, 1)$ or summable $|R, \log n, 1|$, if the sequence $\{R_n\}$ is of bounded variation, that is to say, the infinite series

$$(1.1) \quad \sum |R_n - R_{n+1}|$$

is convergent. When the condition (1.1) is satisfied with \(\{S_n\} \) replaced by \(\{s_n^{(r)}\} \), the series \(\sum a_n \) is said to be summable \(|(R, \log n, 1). (C, r)| \).

We write

\[
\Delta U_n = \Delta U_n = U_n - U_{n+1},
\]

\[
\Delta^n U_n = \Delta \Delta^{n-1} U_n, \quad (r \geq 2).
\]

\(\sum' \) denotes summations over \(-\infty < \nu \leq -1, \ 1 \leq \nu \leq n-1, \) and \(n+1 \leq \nu < \infty \).

The following identities are well-known ([4], [9], [10]):

\[
(1.2) \quad t_n^{(r)} = n(s_n^{(r)} - s_{n-1}^{(r)}),
\]

\[
(1.3) \quad n a_n = \Delta^r T_n^{(r)},
\]

\[
(1.4) \quad \Delta^n U_n = \sum_{\nu=0}^{r} (-1)^{\nu} \binom{r}{\nu} U_{n-\nu}.
\]

Let \(f(t) \) be a periodic function with period \(2\pi \) and integrable in the Lebesgue sense in \((-\pi, \pi)\). Let the Fourier series associated with the function \(f(t) \) be

\[
\frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) \equiv \sum_{n=0}^{\infty} A_n(t).
\]

The allied series of the Fourier series is

\[
\sum_{n=1}^{\infty} (b_n \cos nt - a_n \sin nt) \equiv \sum_{n=1}^{\infty} B_n(t).
\]

2.

Regarding the absolute Cesàro summability of the derived series of a Fourier series the following result is known [8].
Theorem A. If
\[g_1(t) = \frac{1}{t} \int_0^t \frac{f(x+u) - f(x-u)}{u} \, du \]
is of bounded variation in \((0, \pi)\), the derived series of Fourier series of \(f(t)\), at \(t = x\), is summable \(|C, 2 + \delta|\) where \(\delta > 0\).

Since a Lebesgue integral is absolutely continuous, it is plain that \(g_1(t)\) is of bounded variation in any range \((n, \pi)\), \(n > 0\), and therefore it follows that summability \(|C, 2 + \delta|\) of the first derived series of Fourier series depends only upon the behaviour of the generating function in the immediate neighbourhood of the point under consideration. In 1962, the author [11] established that the \(|C, 2|\) summability of the derived series of Fourier series is not necessarily a local property. In this paper we generalise this result by establishing the following.

Theorem 1. The summability \(|(R, \log n, 1)(C, r)|\) of the \(r\)th derived series of the Fourier series of \(f(t)\) is not a local property of the function.

In the following theorem we determine a condition under which the summability \(|(R, \log n, 1)(C, r)|\) of the \(r\)th derived series of Fourier series becomes a local property of the generating function.

Theorem 2. The summability \(|(R, \log n, 1)(C, r)|\) of the \(r\)th derived series of Fourier series depends only on the behaviour of the generating function \(f(t)\) in the immediate neighbourhood of the point \(t = x\), if, when \(r\) is even,
\[
\sum_{n=2}^{\infty} \frac{|A_n(x)|}{n \log n} < \infty,
\]
and when \(r\) is odd
\[
\sum_{n=2}^{\infty} \frac{|B_n(x)|}{n \log n} < \infty.
\]
The following lemmas are pertinent to the proof of our theorems.

Lemma 1. ([12], [15]). If the series \(\sum a_n \) is summable \(|R, \lambda_n, k| \), then \(\sum a_n / \lambda_n^k \) is summable \(|R, e^{\lambda_n}, k|, \ k > 0 \).

Lemma 2. A necessary condition for the series \(\sum a_n \) to be summable \(|(R, \log n, 1). (C, r)| \) is that the series

\[
\sum \frac{|a_n|}{n^{\alpha+1} \log n}
\]

be convergent.

Proof. Since the series \(\sum a_n \) is summable \(|(R, \log n, 1). (C, r)| \) the series \(\sum \{\sigma_n^{(r)} - \sigma_{n-1}^{(r)}\} \) is summable \(|R, \log n, 1| \). Applying Lemma 1 twice it then follows that the series

\[
\sum \frac{\{\sigma_n^{(r)} - \sigma_{n-1}^{(r)}\}}{n \log n}
\]

is summable \(|R, e^n, 1| \), that is, absolutely convergent.* By virtue of the identity (1.2) this is equivalent to

\[
\sum \frac{|t_n^{(r)}|}{n^2 \log n} < \infty.
\]

* It is well-known [7] that the summability \(|R, e^n, k| \) is ineffective in the sense that it sums only convergent series. The analogue of this theorem for absolute Riesz summability in the special case \(k = 1 \) was established independently by Sunouchi [14] and Mohanty [13]. The complete analogue is due to Dikshit [6].
Also, by virtue of the identities (1.3) and (1.4) we have
\[
\sum \frac{|a_n|}{n^{r+1} \log n} = \sum \frac{\Delta^r T_n^{(r)}}{n^{r+2} \log n}
\]
\[
\leq 2^r \sum \frac{|T_n^{(r)}|}{n^{r+2} \log n}
\]
\[
= 0(1) \sum \frac{|t_n^{(r)}|}{n^2 \log n} < \infty.
\]
Hence the lemma.

Lemma 3 [3]. If the series
\[
\sum \frac{|S_n|}{n \log (n+1)}
\]
is convergent, then the sequence \(\{S_n\} \) is summable \(|R, \log n, 1|\).

Lemma 4. If the series
\[
\sum \frac{|o_n^{(r)}|}{n \log n} < \infty
\]
then the series \(\sum a_n \) is summable \(|(R, \log n, 1).(C, r)|\).

The lemma follows clearly by an appeal to Lemma 3.

Lemma 5 [3]. If \(S_n^{(r)} \) denotes the nth Cesàro mean of order \(r \) of the \(r \)th derived series of Fourier series and if \(r \) is even, then
\[
S_n^{(r)}(x) = \frac{2}{\pi} \int_{0}^{\delta} \phi(t) \left\{ \frac{d^r}{dt^r} \left[\frac{1}{A_n^{(r)}} \sum_{v=0}^{n} \frac{\sin(v+\frac{1}{2})t}{2\sin \left(\frac{t}{2} \right)} \right] \right\} dt
\]
\[
- \frac{4}{\pi} \frac{(n+\frac{1}{2})^r}{A_n^{(r)}} \int_{0}^{\delta} \phi(t) \sin \left(\frac{t}{2} \right) \frac{\sin (n+\frac{1}{2}+\frac{1}{2} r) t}{(2 \sin \left(\frac{t}{2} \right)^{r+2}} dt
\]
\[
+ 0 \left(\sum_{v} \frac{|A_v^{(r)}(x)|}{(n-v)^2} \right) + O\left(|A_n^{(r)}(x)| \right) + O\left(\frac{1}{n} \right).
\]
Lemma 6 [1]. If the series
\[\sum_{n=1}^{\infty} \frac{|A_n(x)|}{n \log n} \]
is convergent, then the series
\[\sum_{n=1}^{\infty} \frac{1}{n \log n} \sum_{n=1}^{\infty} \frac{|A_n(x)|}{(n-\nu)^2} \]
is convergent.

Lemma 7 [5]. Suppose \(f_n(x) \) to be measurable in \((a,b) \), where \(b-a \leq \infty \), for \(n = 1,2,\ldots \), then a necessary and sufficient condition that for every function \(\phi(x) \), integrable over \((a,b) \), the functions \(f_n(x)\phi(x) \) should be integrable over \((a,b) \) and
\[
\sum_{n=1}^{\infty} \left| \int_{a}^{b} f_n(x)\phi(x)dx \right| < \infty ,
\]
is that \(\sum_{n=1}^{\infty} |f_n(x)| \) is essentially bounded in \((a,b) \).

4.

Proof of Theorem 1. Let \(r \) be even. The theorem will be established if we prove that there is a function integrable over \((a,\beta) \subset (0,\pi)\) and zero in the remainder of the interval whose \(r \)th derived series of Fourier series is not summable \(|(R, \log n, 1),(C, r)|\). By virtue of Lemma 2, it is therefore sufficient to show that there exists a function \(x \) integrable over \((a,\beta)\) and such that
\[
\sum_{n=2}^{\infty} \left| \int_{a}^{\beta} x(t) \frac{\cos nt}{n \log n} dt \right| = \infty .
\]
But
\[
\frac{\sum_{n=2}^{\infty} \left| \cos nt \right|}{n \log n} \geq \frac{\sum_{n=2}^{\infty} \cos^2 nt}{n \log n} \geq \frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{n \log n} - \frac{1}{2} \left| \sum_{n=2}^{\infty} \frac{\cos nt}{n \log n} \right| = \infty ,
\]

53
and therefore the theorem follows by Lemma 7. The proof when \(r \) is odd is similar.

Proof of Theorem 2. Let us suppose that \(r \) is even. By virtue of Lemma 5 we have

\[
S_n^{(r)}(x) = \frac{2}{\pi} \int_0^\delta \phi(t) \left\{ \frac{d^n}{dt^n} \left(\frac{1}{A_n^{(r)}} \sum_{\nu=0}^n A_n^{(r-1)} \frac{\sin (\nu+\frac{1}{2})t}{2\sin \frac{t}{2}} \right) \right\} dt
\]

\[- \frac{4}{\pi} \frac{(n+\frac{1}{2})^r}{A_n^{(r)}} \int_0^\delta \phi(t) \sin \frac{t}{2} \frac{\sin (n+\frac{1}{2}+\frac{1}{2}n)t}{(2\sin \frac{t}{2})^{r+2}} dt
\]

\[+ 0 \left(\sum \frac{|A_{\nu}(x)|}{(n-\nu)^2} \right) + 0(|A_n(x)|) + 0 \left(\frac{1}{n} \right).
\]

\[= \sum_{\nu=1}^5 M_{\nu}, \text{ say.}
\]

We observe that for positive \(\delta \), however small but fixed, the convergence of the series

\[
\sum \frac{|M_{\nu}|}{n \log n} \quad (\nu = 1, 2)
\]

depends only upon the behaviour of the generating function \(f(t) \) in the immediate neighbourhood of the point \(x \). Also, since by the hypothesis of the theorem

\[
\sum \frac{|A_n(x)|}{n \log n} < \infty,
\]

by an appeal to Lemma 4 it follows that for establishing the theorem we need only show that

\[
\sum \frac{1}{n \log n} \sum \frac{|A_{\nu}(x)|}{(n-\nu)^2}
\]
is convergent. But this follows by virtue of Lemma 6 and the hypothesis of the theorem. This completes the proof of the theorem when \(r \) is even. A similar proof holds for the case when \(r \) is odd.

The author is thankful to the Referee for his suggestions.

REFERENCES

Department of Mathematics,
Banaras Hindu University,
Varanasi-221005, India.